1. INTRODUCTION

Reliable remote sensing of super-cooled liquid water could improve aviation safety in winter weather by enhancing the detection of aircraft icing conditions. Previous studies have suggested the potential of techniques using reflectivity differences from dual-wavelength radars, or single wavelength measurements along with a radiometer-derived integrated water path, to accurately retrieve range-resolved liquid water content in clouds. Under the auspices of the FAA’s Aviation Weather Research Program, NCAR is evaluating these techniques with a view toward developing an integrated fuzzy-logic algorithm for producing dependable profiles of cloud liquid water content and droplet size.

Two recent field programs, the Mount Washington Icing Sensor Project (MWISP) and the Alliance Icing Research Study (AIRS), supplied X-, K a -, and W-band polarized Doppler radar data and coordinated radiometer measurements that may be used to compare three promising retrieval methods. Results are presented below for a case from MWISP in which data for all three bands are available, and the potential for integrating these methods into a combined technique is discussed.

2. RETRIEVAL METHODS

Three promising methods for retrieving cloud liquid water content (LWC) profiles from radar and radiometer measurements are described below.

2.1 Method 1: Dual-wavelength reflectivities

The dual-wavelength method is based on the observation that liquid water attenuates radar signals differently depending on their wavelengths (Doviak and Zrnić, 1993; Vivekanandan, et al., 1999 and 2001). At radar wavelengths, attenuation due to small-droplet scattering is relatively insignificant. Therefore, the measured reflectivity at a range \(r \) from a radar having wavelength \(\lambda \), \(Z_a(r) \), depends on the reflectivity in the radar sampling volume, \(Z(h) \), and the two-way absorption of the intervening medium:

\[
Z_a(r) = Z(h) e^{-2 \int_{h_0}^{h} \sigma_{abs}(\lambda, z)dz}.
\]

(1)

Taking \(\log_{10} \) and the derivative of both sides, it follows that

\[
\frac{\partial}{\partial h} \left[dBZ_{a1}(h) - dBZ_{a2}(h) \right] = 20 \log_{10}(e) \left(\sigma_{abs}(\lambda_2, h) - \sigma_{abs}(\lambda_1, h) \right).
\]

(2)

If the attenuation due to water vapor and oxygen is relatively small or the measured dBZ difference has been adjusted for it, then \(\sigma_{abs} = \sigma_{lw} \), the absorption due to liquid water. When the radar wavelengths are sufficiently small to be approximately spherical and are much smaller than \(\lambda \), Mie theory may be used to write

\[
\sigma_{lw}(\lambda, h) = \frac{6\pi}{\rho_w \lambda^2} L(h) \ln[-K(\lambda, T(h))]
\]

(Doviak and Zrnić, 1993). Here \(\rho_w \) is the density of water, \(L(h) \) is the liquid water content in the same units, \(\lambda \) has the same units as \(h \), and \(K = (m^2 - 1)/(m^2 + 2) \); the complex index of refraction of water, \(m \), is a function of the wavelength and temperature. With these substitutions, equation (2) relates \(L(h) \) to the range derivative of the radar dBZ difference at \(h \). In practice, radar measurements are available only at discrete range gates, so sums are used in place of the integrals above and the derivative is estimated using a finite difference over range. Noise in the measurements or the presence of large droplets may require that the \(dBZ_{a1} - dBZ_{a2} \) difference profiles first be fit by a monotone increasing function.

Once a liquid water profile has been computed and \(Z \) has been estimated by inverting equation (1), a useful estimate of particle diameter, called radar estimated size (RES), may be obtained from

\[
RES = \left(\frac{D^6}{D^3} \right)^{1/3} = \left(\frac{\pi \rho_w Z}{6 \sigma_{lw}} \right)^{1/3}
\]

(Vivekanandan, et al., 2001), where \(\langle D^3 \rangle \) denotes the \(N \)th moment of the droplet size distribution and \(\rho_w \) the density of water.

2.2 Method 2: Gamma distribution fit

Empirical data suggest that cloud water droplet sizes may be well-approximated by the normalized Gamma distribution,

\[
N(D) = N_i \frac{\Lambda^{\mu+1} \Gamma(\mu+1)}{\Gamma(\mu+1)} e^{-\Lambda D^\mu}
\]

(5)

where \(N_i \) denotes the total droplet number density, \(D \) is the droplet diameter, and \(\Gamma \) is the Euler gamma function. If the size distribution parameters \(\mu \) and \(\Lambda \) are known, the cloud liquid water content and reflectivity may be obtained from the third and sixth moments, respectively:

\[
L = \frac{1}{6} \pi \rho_w \langle D^3 \rangle = \frac{1}{6} \pi \rho_w N_i \frac{(\mu+3)(\mu+2)(\mu+1)}{\Lambda^3}
\]

(6)

and

\[
Z = \langle D^6 \rangle = N_i \frac{(\mu+6)\cdots(\mu+2)(\mu+1)}{\Lambda^6}
\]

(7)

The units of \(\rho_w \), \(N_i \), and \(\Lambda \) are generally chosen so that \(L \) has units of g/m³ and \(Z \) has units mm⁶/m³.
Using radar-measured reflectivities $dBZ_{1}^{'},\ldots, dBZ_{n}^{'}$ at n range gates and the total integrated water path, L_{tot}, obtained from a radiometer or sounding, it is possible to fit $n+1$ free parameters of the droplet distributions over those ranges. The droplet number density, N_{t}, has been found to be roughly constant throughout stratus clouds (Frisch et al., 1995), and setting $\mu = 1$ still allows a reasonable collection of candidate distribution functions, as illustrated in Figure 1. Given any choice of N_{t} and $\Lambda_{1},\ldots, \Lambda_{n}$, the range-integral of the liquid water contents from (6) and reflectivities obtained via equations (7) and (1) may be compared with the observed L_{tot} and $dBZ_{1}^{'},\ldots, dBZ_{n}^{'}$. Choosing parameter values to minimize the squared error yields a “best-fit” liquid water profile. Other drop size distributions could also be used with this method; e.g., Austin et al., 2001, used a lognormal distribution and visible optical depth in place of the Gamma distribution and integrated liquid path.

Once they are obtained, the best-fit parameters may be used to produce estimates of the droplet mean diameter, $(\mu + 1)/\Lambda_{n}$, median volume diameter (MVD), $(\mu + 3.67)/\Lambda_{n}$, and RES, $(\mu + 6)(\mu + 5)(\mu + 4)^{1/3}/\Lambda_{n}$.

2.3 Method 3: $Z^{1/2}$ proportional assignment

A second method for using $dBZ_{1}^{'},\ldots, dBZ_{n}^{'}$ and L_{tot} to derive range-resolved liquid water content simply distributes the total water proportionally to the square root of the reflectivities, $Z_{k}^{1/2}$:

$$L_{k} = L_{tot} \frac{Z_{k}^{1/2}}{\sum_{j=1}^{n} Z_{j}^{1/2} / \Delta h_{j}}$$

where Δh_{j} is the j^{th} range gate spacing. This approach is justified by empirical measurements (Frisch et al., 1995 and 2000). It is accurate when $\langle D^{6}\rangle \propto \langle D^{3}\rangle^{2}$, i.e., $Z \propto L^{2}$, with the same constant of proportionality for the entire profile. This condition is met when the drop size distribution “shape” and total number density are identical for all ranges. For the Gamma distribution described in Section 2.2, this occurs when

$$\frac{\langle D^{6}\rangle}{\langle D^{3}\rangle^{2}} = \left(\frac{\pi \rho_{w}}{6} \right) \frac{Z}{L^{2}} = \frac{1}{N_{t}} \frac{(\mu + 6)(\mu + 5)(\mu + 4)}{(\mu + 3)(\mu + 2)(\mu + 1)}$$

is constant over range, but this condition is precisely equivalent to the assumption that N_{t} and μ are fixed for each profile. In general, the relationship between Z and L^{2} is quite complex, as illustrated in Figure 2; whether $Z \propto L^{2}$ for a profile depends on the spatial correlation present under the given meteorological conditions.

In implementing Method 3, the reflectivities, Z_{k}, must be obtained from the radar-measured $Z_{k}^{'}$ via equation (1), but this requires that the values of dZ_{k} and hence L_{tot} at gates $1,\ldots,k-1$ already be known. Fortunately, choosing a reasonable starting liquid water profile to obtain absorption coefficient estimates and then iterating the method converges quite rapidly.

![Figure 1: The family of normalized Gamma droplet size distributions from which the best fit is estimated in Method 2. N_{t} is constant for the profile, Λ varies by range gate, and $\mu = 1$ is fixed. Droplet diameters D may be measured in mm, in which case Λ has units mm$^{-3}$.](image)

![Figure 2: Pairs of liquid content and dBZ values obtained from airborne disdrometer data under no-ice conditions with superimposed constant Z/L^{2} curves. The data were collected near Cleveland, OH by the NASA GRC Twin Otter as part of the Supercooled Large Drop Research Program (SLDRP) in February, 1998.](image)

3. COMBINED TECHNIQUE

Synthesizing the three methods described above into a combined technique offers the possibility of producing even more reliable LWC and droplet size profiles. This synthesis could be accomplished using a fuzzy-logic approach: performing quality control on the raw data (e.g., using the Doppler moments and linear depolarization ratio), supplying “confidence” weights for data and for the output of each processing step, and computing a weighted combination of the three methods as the final output. If it is well-designed, such a technique should be more accurate and robust than any retrieval method alone, since each one works well under somewhat different conditions. For instance, Method 1 should give good results when the radar beam widths and sensitivities are well-matched and little Mie scattering is present, and it does not require radiometer data. Method 2 is appropriate when the droplet sizes are well-described by the family of distribution functions being used in the fit, and it supplies output even when only one radar is providing reliable data. Method 3 applies when Z/L^{2} is approximately constant throughout the profile, and it can be shown to be insensitive to systematic biases in measured reflectivity values. In fact, output from some methods might be used to censor that from others, yielding additional control over output quality.

The present study is directed at qualitatively assessing the three retrieval methods in order to gauge their potential as part of a combined technique. In future efforts, comparisons of retrievals with in-situ water content and droplet size data from MWISP and AIRS will be used to perform a quantitative evaluation of a combined technique’s skill.
4. RESULTS

Both the MWISP and AIRS datasets include coordinated microwave radiometer and X-, Kₐ-, and W-band polarized Doppler radar measurements suitable for testing the three LWC retrieval methods described above. In MWISP, the NOAA Environmental Technology Laboratory’s 3-channel radiometer, NOAA/ETL X- and Kₐ-band radar, and University of Massachusetts Cloud Profiling Radar System (CPRS) Kₐ- and W-band radars were used. AIRS employed the Radiometrics 2-channel WVR-1100 radiometer, McMaster University’s IPIX X-band radar, and the UMass CPRS Kₐ- and W-band radars. In both datasets, the radars provide Doppler moments, reflectivity, and linear depolarization ratio, while the radiometers provide total-path vapor and liquid water measurements.

In this section, results obtained from the three methods using data collected between 16:35 and 17:05 UTC on April 14, 1999, during MWISP are presented. This case was selected because the NOAA X- and Kₐ-band radars, CPRS Kₐ- and W-band radars, and NOAA radiometer were all operating and were directed at a common elevation angle of about 20°. In addition, the Kₐ-band linear depolarization ratios suggest that very little ice or mixed-phase was present.

4.1 Data pre-processing

For each pair of radars, the radar data were preprocessed by interpolating onto the finer of the two range-time grids and applying a 10-second x 150 m median filter; cross-correlations in range and time were computed to ensure that the data were properly aligned. The “cloud top” was identified as the last range gate after at least 250 m of “good” (>−30 dBZ) reflectivity data recorded for both wavelengths. The filtered dBZ values were corrected for attenuation due to atmospheric vapor, oxygen, and nitrogen; to accomplish this, the vapor profile and the attenuation coefficients for the four radar frequencies were computed based on temperature, pressure, and relative humidity profiles recorded by an ATEK sounding taken at 16:22 UTC. In addition, before applying Method 1, the reflectivity differences were adjusted by −5 dB for the CPRS radars and −1 dB for the NOAA radars to account for apparent calibration differences.

Figure 3 shows the reflectivities recorded by the four radars at two times, 16:35 and 16:55 UTC, at ranges up to the cloud top. Median filtering has been performed, but not adjustment for attenuation due to gases or for calibration differences. At 16:55 UTC, clutter from Mt. Washington is evident between about 3 and 4 km; it is most severe for the X-band radar, which has the widest beam (0.9°, as opposed to 0.5° for both Kₐ-band radars and 0.18° for the W-band radar).

4.2 Method 1 results

Figure 4 displays a comparison between the total integrated water path obtained via Method 1 from the CPRS and NOAA radars with that recorded by the NOAA radiometer between 16:35 and 17:05 UTC. The over-estimate in the CPRS retrieval at the beginning of the time period may be due the presence of large droplets, causing Mie scattering, or to noise. The later underestimate by the CPRS retrieval is probably due to the weakening of the cloud, under which the weak W-band sensitivity only allows a limited portion of the cloud to be measured. The overestimate in the NOAA retrieval after 17:00 UTC is likely due to the strong clutter in the X-band return.

Because of the mismatch in radar beam widths and sensitivities, and the occasional presence of Mie scattering conditions, the reflectivity difference for each pair of radars does not always increase with range, requiring that it be fit by a monotone function before Method 1 is applied. The development of a robust scheme for doing this using image-processing techniques in the space and time domains is still underway; therefore, range-resolved retrievals are not shown here.
5. CONCLUSION

The three methods presented in this paper show good promise in retrieving reliable liquid water content profiles using coordinated dual-wavelength radar and radiometer data. Furthermore, a combined technique that synthesizes the three methods using a fuzzy-logic approach has the potential to be even more accurate and robust. Such an algorithm will perform data quality control and will assign confidence weights based on the raw data, intermediate processing, and comparisons of the methods’ outputs. These values will be used throughout the algorithm and in the final synthesis of the results. In addition, output liquid water and droplet size profiles will be supplied with confidence values, thereby allowing their diagnostic value to be judged.

In future work, a combined algorithm will be developed and evaluated using a number of additional cases from both MWISPs and AIRS. Ultimately, a quantitative evaluation will be performed using in-situ data collected from aircraft and ground stations. It is hoped that the combined technique will eventually become part of a practical remote-sensing solution for detecting aircraft icing conditions.

5. ACKNOWLEDGEMENT

This research is in response to requirements and funding by the Federal Aviation Administration (FAA). The views expressed are those of the authors and do not necessarily represent the official policy or position of the FAA.

6. REFERENCES

