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1. INTRODUCTION
 

Stochastic weather generators have had many 
applications, including agricultural risk assessment and 
generation of regional climate change scenarios 
(Semenov et al. 1998; Wilks and Wilby 1999).  As time-
series models with several interconnected components, 
stochastic weather generators typically use Markov chains 
or wet/dry spell length distributions to simulate 
precipitation occurrence, gamma or mixed exponential 
distributions for precipitation amount, and a multivariate 
stochastic process for daily maximum and minimum air 
temperature (Tmax and Tmin) and total daily solar radiation 
(R). The generated sequences are designed to have the 
desired serial and cross-correlations between Tmax, Tmin, 
and R by two matrices, A and B, which are defined using 
lag-0 cross-correlations and lag-1 serial correlations (see 
Section 3.2 for details).  In many weather-generator 
implementations, A and B are treated as constant with 
respect to location, time of year, and wet/dry status.  
However, deviations from these constant values have 
been documented (Schubert 1994; Hayhoe 1998) and 
several authors (e.g., Wilks and Wilby, 1999) have 
suggested using location-specific parameters in an effort 
to account for spatial and seasonal differences.   

In this study, the effects of varying these stochastic 
model parameterizations are investigated.  We examine 
the spatial and seasonal differences in the values of the 
lag-0 cross-correlations and lag-1 serial correlations, and 
hence A and B, as well as the differences between 
simulated weather series when A and B are held constant 
and when they are allowed to vary by location, wet/dry 
status, and time of year.  In addition to the traditional 
statistics that are used to evaluate stochastic weather 
generators, diurnal temperature range (DTR = Tmax - Tmin), 
is used for model evaluation, as it is a derived variable 
that should have similar persistence in both the models 
and observations. 
 
2. DATA 

 
To estimate the impacts of seasonally and spatially 

varying autoregressive parameters, daily data were 
extracted for five climatically diverse locations across the 
contiguous U.S.A.:  Boston, MA; Indianapolis, IN; 
Jacksonville, FL; Portland, OR; and Tucson, AZ.  Hourly 
air temperature and solar radiation values for 1961 to 
1990 were available at these five locations through the 
Solar and Meteorological Surface Observation Network 
dataset (i.e., SAMSON CD-ROMs), available from the 
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National Climatic Data Center, Asheville, NC.  To allow 
(future) comparisons and analysis with cooperative 
climatic data, daily Tmax and Tmin (°C) were calculated 
using a 7am observation time.  Daily total solar radiation 
values (MJ m-2 day-1) were produced by integration of 
hourly solar radiation observations.   
 
3. DESCRIPTION OF WEATHER GENERATOR 
 

The stochastic weather generator used in this 
research is based on the well-known WGEN model 
(Richardson and Wright 1984).   Using a number of 
parameters estimated from observational data, the model 
traditionally generates daily values of precipitation 
occurrence, precipitation amount, Tmax, Tmin, and R.  In 
this study, the objective was to evaluate the impact of the 
parameterizations of A and B.  Therefore, precipitation 
amount was not simulated. 
 
3.1. Precipitation Occurrence Component 
 

Precipitation occurrence is simulated by a two-state, 
first-order Markov chain.  The occurrence of precipitation 
depends on two parameters: p01, the probability of a wet 
day following a dry day, and p11, the probability of a wet 
day following a wet day.  In this study, a wet day is 
defined as any day having precipitation > 0 mm.  
Depending on the precipitation occurrence simulation for 
the previous day, a uniform [0,1] random number is 
compared to the appropriate transition probability.  If the 
random number is less than the transition probability, a 
wet day is simulated.  Otherwise, a dry day is simulated.   
 
3.2. Temperature and Radiation Component 
 

Daily values of Tmax, Tmin, and R are simulated by a 
first-order multivariate stochastic process, as described by 
Matalas  (1967).  Harmonic analysis is used to construct 
annual cycles of the input variables and their standard 
deviations.   Annual-cycle harmonics are fit to daily means 
and standard deviations for wet and dry days separately 
(in some cases, a given day of the year may have few wet 
or dry occurrences; therefore, a 15-day moving window 
was used to construct the daily means and standard 
deviations). The time series then are reduced to residual 
elements by subtracting the daily means, as defined by 
the harmonics.   

The weather generator simulates daily residuals of 
Tmax, Tmin, and R for day i with the equation 
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where Xi is a (3 × 1) matrix containing the current day�s 
values of Tmax, Tmin, and R, Xi-1 is a (3 × 1) matrix 
containing the previous day�s values of Tmax, Tmin, and R, 



εi is a (3 × 1) vector of independent standard Normal 
values, and A and B are (3 × 3) matrices given by 
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where Mo is the (3 × 3) matrix of lag-0 cross-correlations  
and M1 is the (3 × 3) matrix of lag-1 serial correlations.  
For example, Mo (1,2) is the correlation between Tmax and 
Tmin and M1 (1,2) is the correlation between Tmax and Tmin 
lagged by one day.   While A can be directly computed, 
we used an iterative method to solve for B. 

After generation of the residual series with Eq. 1, the 
daily harmonics described above are used to produce 
dimensional values of Tmax, Tmin, and R, based on wet/dry 
status. 
 
4. OBSERVED RELATIONSHIPS 
 

In most implementations, WGEN-type models use 
fixed values of A and B (and therefore M0 and M1), as 
given by (Richarson 1982).  Data records from the five 
stations used in this study show substantial deviations 
from Richardson�s values of M0 (Fig. 1).  Large 
differences in correlation occur between wet and dry days.  
Seasonally varying calculations show even larger 
differences in the magnitude � and, in some cases, the 
sign � of the correlations (Fig. 1).   While the literature-
based values of the correlation may be appropriate during 
some seasons at some locations, the observed and 
literature-based (constant) correlations are quite different 
when location and the entire calendar year are considered 
(Fig. 1).  The elements of M1 are less variable than the 
elements of M0 and show smaller differences between wet 
and dry days.  However, for some variables at some 
locations, the differences in M1 may be important.  For 
example, the observed and literature-based lag-1 
correlation between Tmax and R for January at 
Indianapolis differ by >0.3. 

The differences in the correlations between variables 
ultimately dictate the variability in the elements of the A 
and B matrices.   For each location, at least one element 
of the B matrix shows substantial differences between wet 
and dry observations.  However, these differences are 
typically small (~0.1) and the literature-based values 
provide a reasonable estimate in both cases (wet/dry). 
This preliminary analysis suggests that seasonal and 
spatial variability of elements within the B matrix is 
negligible.   Elements of the A matrix, however, show 
large differences both seasonally and between wet and 
dry status (e.g., Fig. 2).  All five of the stations used here 
exhibit similar ranges of variability, although the seasonal 
patterns differ substantially.  Variability in the elements of 
the A matrix suggests that using station defined 
parameters may have a large impact on the generated 
data values. 

0

0.5

1
Dry

C
or

r(
Tm

ax
,T

m
in

) B I
J P

T B
I

J
P

T B I

JP

T

B I

J

P

T

0

0.5

1
Wet

B
I

J

P

T
B

I

J

P
T B

I

J

P

T
B I

J
P

T

-0.4
-0.2

0
0.2
0.4
0.6
0.8

Dry

C
or

r(
Tm

ax
,R

ad
)

B
I

J P

T

B
I

J

P

T

B
I

J

P
T

B I
J

P

T

-0.4
-0.2

0
0.2
0.4
0.6
0.8

Wet
B

I

J

P

T
B I

J P T
B I J P T

B
I

J

P

T

Jan Apr Jul Oct
-0.6

-0.4

-0.2

0

0.2

0.4 Dry

C
or

r(
Tm

in
,R

ad
)

B I J P
T

B I

J

P
T

B

I J

P

T

B
I

J
P

T

Jan Apr Jul Oct
-0.6

-0.4

-0.2

0

0.2

0.4 Wet

B
I

J

P
T

B

I
J

P

T
B

I J

P

T

B
I J

P

T

 
 
Fig 1.  Observed lag-0 cross-correlations for wet and dry 
observations at Boston (B), Indianapolis (I), Jacksonville 
(J), Portland (P), and Tucson (T).  The literature-based 
values are shown as dashed lines.  
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Fig 2. Elements of the A matrix for Indianapolis, IN 
showing seasonal variability and differences between wet 
(*) and dry (+) days.  Literature-based values are shown 
with a solid black line. 
 
5. WEATHER GENERATOR IMPLEMENTATION 
 
To investigate the effects of the spatially and seasonally 
varying parameterizations described above, the weather 
generator described in Sec. 3 was used to generate 100-
year sequences of daily Tmax, Tmin, and R for the stations 
described in Sec. 2.  The weather generator was run in 
two modes.  First, the elements of A and B were held 
constant according to the literature-based values (i.e., 
values given by Richardson, 1982).  In the second mode, 
monthly values of A and B that depend on wet/dry status 



are computed using historical data from each individual 
station.  
 
6.    EVALUATION OF GENERATED DATA 
 
6.1. Basic Monthly Statistics 
 

Several traditional statistics were used to evaluate 
the simulated data.  These included monthly means, 
medians, standard deviations, and maximum and 
minimum values of each of the generated variables.  For 
both Tmax and Tmin, each of these statistics exhibited close 
agreement between both of the generated series and the 
observed data.  However, for some locations, for some 
months, the upper tails of the generated Tmax distributions 
are not in agreement with the observations (see Sec. 6.3).  
These results suggests that both generators successfully 
reproduce the probability distributions of the means and 
standard deviations of the temperature variables, but may 
fail to properly simulate extreme values during some 
months due to poorly modeled tails. 

The generated R data show systematically 
overestimated monthly maximum values.  As a result of 
describing R with a Normal distribution, both generators 
produce negative values, which are set to zero.  
Therefore, many months have a simulated minimum R 
value of 0.  Several methods have been suggested for 
dealing with this problem, including the use of semi-
empirical distributions (Semenov et al. 1998).  
 
6.2.   Correlations Between Generated Variables 
 

The correlation structure between the generated 
variables is fundamentally dependent on the values of A 
and B.  It was therefore expected that the station specific 
generator (with monthly parameterizations of A and B 
according to wet/dry status) would better replicate the 
observed correlations between variables.  Computation of 
the lag-0 cross-correlations and lag-1 serial correlations 
confirmed that station-based, monthly parameterization of 
A and B results in a nearly perfect match between 
simulated and observed data.   Data simulated with the 
constant, literature-based values for A and B resulted in 
large differences between observed and generated 
correlations (e.g., observed and generated lag-0 
correlation between Tmin and R at Portland, OR in June 
differ by ~0.4).  The lag-1 serial correlations of the 
generated data are typically not as different as the lag-0 
correlations, but substantial differences (>0.3) exist for the 
stations analyzed here.   
 
6.3.  Extreme Events and Persistence 
 
      The generated sequences were evaluated in terms of 
the mean number of days below and above certain 
thresholds, as well as the persistence of events below and 
above those thresholds.  In general, the generated and 
observed series match well in terms of the number of 
extreme events.  For three of the stations analyzed 
(Boston, MA, Indianapolis, IN, and Jacksonville, FL), the 
number of extremely warm events (Tmax>35°C) was 
overestimated by both weather generators (Fig. 3).  At  
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Fig 3.  Evaluation of extreme events and persistence for 
Jacksonville, FL: a) Mean number of days with Tmin below 
freezing, b) Mean number of spells of given length below 
freezing, c) Mean number of days with Tmax above 35°C, 
and d) Mean number of spells of given length with Tmax 
above 35°C.  Literature-based data is symbolized by an 
�o�, station-specific data by a �∗ �, and observed data by a 
solid line. 
  
Portland, the number of extreme warm events was slightly 
underestimated.  At Tucson, there was good agreement 
between observed and generated occurrences of Tmax 
>35°C.  However, this is less of an extreme value in the 
warm climate of the Southwest. 
 
6.4.   Diurnal Temperature Range (DTR) 

 
As mentioned above, diurnal temperature range 

(DTR) was used as an evaluation tool in this research.  
Since DTR is dependent on both Tmax and Tmin, its proper 
simulation requires that the relationship between these 
two variables be preserved.  For example, the literature-
based generator (with constant A and B) produces many 
more days with negative DTR (i.e., a fundamental 
simulation error) than the station-specific generator at 
three of the locations used in this study (see Table 1).   
While both weather generators (literature and station-
specific) simulated monthly means and standard 
deviations of generated variables well, DTR (and, 
therefore, the relationships between variables) is not 
simulated as well by the literature-based generator (Fig. 
4).   Although monthly mean DTR is similar in both 
models, the station-based generator achieves better 
agreement between observed and simulated standard 
deviation of DTR (Fig. 4).   
 
Table 1. Average annual number of days with DTR<0 in a 
100-year simulation 

Station # of days with 
DTR<0 (literature-
based A, B) 

# of days with 
DTR<0 (station-
specific A, B) 

Boston 9.78 4.47 

Indianapolis 8.52 2.80 

Jacksonville 0.69 0.86 
Portland 3.73 1.89 

Tucson 0.11 0.20 
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Fig 4.  Monthly means and standard deviations of diurnal 
temperature range (DTR) expressed as the difference 
between generated and observed values at Boston, MA 
(literature-based data is symbolized by �o�, station-specific 
data is symbolized by �∗ �): a) means for dry observations, 
b) means for wet observations, c) standard deviations for 
dry observations, and d) standard deviations for wet 
observations.   
 

The simulation of the standard deviation of DTR 
varies considerably between stations.  For example, on 
dry days, the literature-based generator overestimated  
the standard deviation at two stations (Boston, MA and 
Indianapolis, IN), underestimated the standard deviation 
at one station (Portland, OR), and had a seasonally 
varying pattern at the remaining two stations 
(Jacksonville, FL and Tucson, AR).   Similar relationships 
exist for the wet observations.  The standard deviations of 
DTR are closely related to the persistence of DTR.    For 
those stations that overestimate the standard deviation of 
DTR, a higher degree of persistence (as seen in the lag-1 
serial correlation of DTR) is observed.   This persistence 
is directly related to the values in the A matrix.  Because 
A is multiplied by the previous days values in the 
generating equation (Eq. 1), the persistence in the 
generated data is dependent on the magnitudes of the 
elements of A.  Examination of the A matrices for the five 
stations in this study confirms that larger A values are 
associated with greater persistence (and hence a larger 
standard deviation) of DTR. 

  The station-specific generator also reproduces the 
relationships between temperature and radiation more 
accurately.  Because DTR is closely linked to cloud cover 
and precipitation (Leathers et al., 1998), and radiation is a 
reasonable surrogate for cloud cover, allowing the 
relationships between temperature and radiation to vary 
by location and time of year helps to improve the 
simulation of temporal variability in DTR. 
 
7. DISCUSSION AND CONCLUSIONS 

 
In this study, the effects of stochastic weather 

generator parameterizations have been investigated.  
Using historical data from five stations in the United 
States, we examined the spatial and seasonal differences 
in the lag-0 cross-correlations and lag-1 serial correlations 

between Tmax, Tmin, and R.  These correlations ultimately 
determine the nature of the A and B matrices used in the 
stochastic weather generator, and were found to vary both 
spatially and seasonally.   

To investigate the impacts of the seasonal and spatial 
variability in the elements of these matrices, 100-year 
simulations for the five stations were undertaken with 1) A 
and B assumed constant according to the literature-based 
values and 2) A and B computed for each individual 
station on a monthly basis.  The second implementation 
also allowed A and B to vary according to wet/dry status.    

The simulations were compared to observed data 
using statistical and graphical methods.  The results 
suggested that monthly means and standard deviations of 
each simulated variable agree with observed values for 
both simulations.  The two implementations of the weather 
generator exhibited only small differences in monthly 
maximum and minimum values.   However, the literature-
based generator failed to preserve relationships between 
variables.  This shortcoming is evident in both the diurnal 
temperature range (DTR) and in the correlations between 
simulated variables.   

These results suggest that literature-based values 
may be appropriate for applications where monthly values 
of the means and standard deviations of generated 
variables are of interest.  For applications that require 
proper simulation of relationships between variables, 
station-specific parameterizations are recommended. 
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