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1. INTRODUCTION

Long-term hourly temperature data are digitally
available from NOAA via the National Climatic Data
Center, generally covering the period 1948 to present.
Currently, the digital hourly-resolution climatic record is
in the process of being extended backward from 1948
into the late 1920s, through digitization of the original
Surface Airways Observations (SAO) paper forms. An
important component of that work is extending and
applying quality control (QC) for all variables being
processed. Due to the widespread interest among the
scientific community in long-term trends and variability
of temperature and moisture variables, this study
focuses on dry-bulb, dew point, and wet-bulb
temperatures and on methods developed to improve
their QC.

Conventional temporal consistency checks
(Meek and Hatfield 1994) in the QC of hourly
temperature data incorporate only the magnitude of the
change from one hour to the next. A threshold
magnitude for hour-to-hour temperature jumps is
employed, and the QC algorithm flags any hourly
temperature for which the first differential exceeds this
threshold in magnitude. In an exploratory analysis using
currently available data, nearly all hourly temperatures
so flagged were actually one-hour spikes or dips; very
few were associated with step changes (i.e., strong
frontal passages). Most of the spikes or dips probably
resulted from simple errors of observation or recording,
such as the transposition or omission of digits. Such
errors are of great interest in the historical SAO
conversion project, which involves a substantial amount
of manual digitization. Therefore, an approach is
needed that addresses this interest and explicitly
defines an hourly temperature flagging threshold in
terms of a one-hour spike or dip.

In this study, two methods are developed and
tested that identify extreme hourly temperature
variability in terms of hourly spikes or dips, using
1949-1958 SAO from 28 stations throughout the United
States. A threshold climatology is presented and
applied in the QC of a test subset covering 1959-1963
SAO. Performance of each method, along with two
traditional methods, is compared, based upon this QC
and experiments on randomly selected temperature
records utilizing a deliberate modification scheme that
mimics typical errors. Because the focus is on the QC
of historical data, units must also be historical.
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2, METHODS

The focus of QC in this study is confined to
temporal consistency checks. Meek and Hatfield (1994)
describe a three-pronged approach to the QC of
meteorological data measured at sub-daily resolution.
First, a limits consistency (LC) check is performed; this
is a common QC procedure used with a wide variety of
weather elements and temporal resolutions (Eischeid et
al. 1995; Reek et al. 1992). Examples include checks
against daily or climatological extremes and physical
bounds (i.e., "plausibility checks," after Gandin (1988)).
Second, the datum in question is passed through an
internal consistency (IC) check, using other information
from the data record at that same hour or adjoining
hours. A simple example is a check to see whether the
dew point exceeds the dry-bulb temperature (Reek et al.
1992).

The objective of the third type, a temporal
consistency (TC) check, is to ensure that variability of
the temperature in question is neither excessively high
nor low, with respect to other observations within the
temporal vicinity. Implementations tend to refer to
excessively high variability in terms of spikes, or dips,
and to excessively low variability as flat-liners, or runs
(Reek et al. 1992; Meek and Hatfield 1994).

TC checks of hourly temperature observations have
historically been restricted to the hour-to-hour (first
difference) rates of change, flagging rates whose
magnitude exceeds a predefined, static threshold (Meek
and Hatfield 1994). Such an hour-to-hour threshold
approach is problematic for the following reasons:

* How the threshold was determined is unclear.
Was climatological information used, and was the
threshold experimentally tested?

*  The threshold does not vary with season.

*  The threshold does not vary over space.

* The approach does not precisely address the
problem of a one-hour anomaly due to the types of
error of interest here; step changes (fronts) are
flagged as well as spikes.

Therefore, in this study, each of these shortcomings

were addressed.

A spike or a dip is defined here as an hourly
observation of temperature about which the successive
first differences of the hourly time series are of opposing
(and nonzero) sign. Two models are developed that
measure the magnitude of the spike or dip in different
ways. The first measures by the minimum absolute
value of the two consecutive first differences about the
hourly observation in question (model MDH2). The
second measures by the residual from a five-hour
median smooth centered on the hour in question (model
MSRS5). The first model is intolerant of missing hourlies,
whereas the second allows no more than one missing



hourly in the five-hour span of the moving window.
Twenty-eight first-order stations from across the United
States were selected for analysis and testing (Figure 1).
At most of these stations, less than 0.01% of the
1949-1963 hourly temperatures were missing, and all
exhibited below 0.10% missing.

The period 1949-1963 was chosen for two
reasons. First, the protocol for temperature and
humidity observation was mostly constant throughout
the period; dew point was calculated from dry-bulb and
wet-bulb temperatures read directly (Robinson 2000;
U.S. Dept. Commerce 1962). Second, only three-hourly
observations are currently available from the mid-1960s
into the early 1980s (Robinson 2000). For model
development, the ten-year period 1949-1958 was
selected, and for testing, the remaining five-year period
1959-1963 was reserved.

For each three-month season (winter is
December—February, etc.), and for each station, the
distribution of all hourly spikes and dips was examined
(the number being generally about one-tenth the total
number of hourlies), and flagging thresholds were
determined. That step involves the substantial problem
of potential outlier identification (Barnett and Lewis
1984; Grant and Leavenworth 1988). Most historical
methods for this purpose assume only one outlier is
present in a set, and their iterative application in finding
more than one outlier is highly problematic (Barnett and
Lewis 1984; Davies and Gather 1993). More recent
methods are multivariate (e.g., Hadi 1992); we include
multivariate data within the LC-IC-TC framework,
specifically as an IC check (Meek and Hatfield 1994;
DeGaetano 1997).

In developing QC for hourly wind data,
DeGaetano (1997) found values flagged generally lay
beyond the 99.9 to 99.95 percentiles in his data sets.
Extrapolating to these data sets, which include only
temperature spikes and dips, a 99.95 percentile
threshold flags approximately one or two spikes or dips
every decade, in each season. Visual inspection of
spike/dip histograms generally supported this flagging
rate, except outlying groups sometimes occurred. With
the understanding that IC checks would likely catch
outliers that were meteorologically valid, the number of
outliers to allow in processing the developmental subset
of the climatological record was increased to four. To
minimize the sensitivity of the threshold choice to
outliers, the percentile corresponding to a four-outlier
pass was used as the threshold for flagging. Thus, a
climatology of extreme hourly temperature variability
was developed.

In testing these models, an experimental
procedure was designed that mimics errors likely in
digitization (Reek et al. 1992). Seven types of
deliberate errors were introduced on randomly selected
samples of 100 hourly observations from each season
and each station, and the percentage of these flagged
was noted in each test. The seven types are:

1. Digit transposition (e.g., 53°F becomes 35°F);
2. Sign omission or commission;

3. Add/subtract 100°F;

4. Add/subtract integer multiple of 10°F;

Figure 1. Flagging thresholds (°F) determined for dry-
bulb temperature using model MDH2, averaged across
all four seasons.

5. Scale shift (e.g., 62°F becomes 6.2°F);

6. Units shift (e.g., 68°F becomes 20°C, as °F);

7. Both subtract and scale (e.g., 36°F as 3°F).
In addition, a test was performed ("Test 0") with no
deliberate modifications within the test data set, to
evaluate the original data flagged by these methods.
Original records whose temperature, dew point, or wet-
bulb was flagged were compared with their temporal
neighbors, and the character of the hourly observation
as a whole was noted (e.g., a spike in temperature was
flagged, but a thunderstorm and wind gust co-occurred).

Finally, two traditional methods were compared

with these two new methods. These are MH94, which
incorporates an hour-to-hour threshold of 11°F (Meek
and Hatfield 1994), and DT18, an 18°F hour-to-hour
threshold previously employed by NCDC.

Table 1. Flagging thresholds (°F) for model MDH2,
averaged over all stations, by variable and by season.
Variables are TMPD=dry-bulb, DPTP=dew point, and
TMPW=wet-bulb temperatures.

Winter Spring Summer Autumn_(Mean)
TMPD 6.4 6.6 7.6 6.3 6.7
DPTP 9.8 10.2 9.0 9.3 9.6
TMPW 5.3 4.9 5.3 4.8 5.0
(Mean) 7.1 7.2 7.3 6.8 7.1
3. RESULTS AND DISCUSSION

Spatial patterns of threshold values determined
for temperature, dew point, and wet-bulb were similar
(Figure 1). Generally, flagging thresholds of both
models MDH2 and MSR5 were minimal over the
eastern United States, maximal over the High Plains,
Rocky Mountains, Great Basin, and Sierra Nevada, and
minimal again along the Pacific coast.

Thresholds varied by season as well (Table 1),
although the variation was more noticeable at some
stations than at others. Overall, thresholds for
temperature exhibited the strongest interseasonal
variability, with those for dew point second. Dew point
thresholds averaged higher than those for temperature,
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Figure 2. Pairwise model performance comparison
across class of models, for dry-bulb temperature. There
are 784 data points, each representing a test type (of 7),
a season (of 4), and a station (of 28).

a result not unexpected given its historical means of
computation and extreme sensitivity of the formula at
low relative humidity. Time series of wet-bulb are quite
well-behaved; both its threshold magnitude and
variability were low. The flagging threshold of 7.1°F in
model MDH2 (Table 1), averaged across stations,
seasons, and variables, was much lower than
thresholds previously utilized, and it is theoretically low
enough to catch errors of digit transposition. Thresholds
in model MSR5 showed similar patterns but averaged
about 1.1°F larger in magnitude. Inclusion of the
interseasonal variability in thresholds dramatically
reduced the scatter in flagging rates in the error-
peppering experiments, compared to the models that
employ an invariant threshold.

Intermodel comparisons demonstrate the
overall superiority of models MDH2 and MSR5, that
explicitly define a spike or a dip, use climatological
information, and allow spatial and seasonal variation in
flagging threshold determination, over models MH94
and DT18, that search for single hour-to-hour jumps and
incorporate constant, predefined thresholds. For dry-
bulb temperature, pairwise comparisons of flagging
rates on a test-by-test case basis are plotted in Figures
2 and 3. Both MDH2 and MSR5 outperformed each of
MH94 and DT18 (Figure 2). This result held for the
other two variables, except in the case of dew point and
model MH94, in which MH94 performance was
comparable to that of MDH2 and slightly better than that
of MSR5. In comparing within model class, MDH2
usually outperformed MSR5 (Figure 3), except in the
case of wet-bulb, in which MSR5 exhibited a slight
advantage. Trimmed (less the bottom 2.5% and top
2.5%) mean bias error (MDH2-MSR5) was +0.081%,
+0.167%, and —0.240% flagged for dry-bulb, dew point,
and wet-bulb temperatures, respectively.
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Figure 3. Pairwise model performance comparison

within class of models, for dry-bulb temperature and the
two new models. See Figure 2 caption for details.

Evaluating model performance on flagging
errors deliberately thrown in experimentation is only one
aspect of total model performance considered. Model
performance in flagging unaltered data from the test
subset of the climatological record also deserves
attention. In terms of the number of flags thrown on
unaltered, original data, model MH94 was by far the
most liberal, whereas model DT18 was the most
conservative. Of five years' worth of original hourly dry-
bulb temperatures at 28 stations, models MH94, MDH2,
MSRS5, and DT18 flagged 0.262% (3224), 0.033% (401),
0.028% (348), and 0.011% (135), respectively. Model
MH94 was also an order of magnitude more active in
flagging dew point, but in that case, model DT18
increased its activity, and the most conservative model
was instead MDH2. In flagging wet-bulb, all models
exhibited a similar 0.025-0.032%, except DT18, which
was an order of magnitude more conservative.

A random sample revealed interesting patterns
of character in the whole hourly observation or its
temporally adjacent observations (Table 2). In most

Table 2. Of a random sample of 100 flagged original
dry-bulb temperatures, 25 per model, the number
belonging to different weather conditions and flagged by
the different models is shown. Condition "Legitimate
spike" is for cases involving a report of a thunderstorm,
moderate to heavy precipitation, showers of any kind, a
45° wind shift, or at least a 5 mph spike in wind speed.

Condition MDH2 MSR5 MH94 DT18 (Total)

Legitimate spike 20 15 8 17 60

Frontal passage 0 0 15 6 21
Suspicious 2 5 0 2 9
Other 3 5 2 0 10

(Total) 25 25 25 25 100



cases (70% for MDH2 and MSR5 combined, and 50%
for MH94 and DT18 combined), values flagged were
also coincident with a report of a thunderstorm, a burst
or shift in wind, heavy precipitation, etc. This is useful
information to include in a subsequent IC check, as in
DeGaetano (1997). Of the 50 flags in the sample
thrown by either MH94 or DT18, nearly as many (41%
combined) were of frontal passages as of legitimate
spikes or dips. By contrast, the sample contained no
frontal passages flagged by MDH2 or MSR5. This
discrepancy is almost certainly due to the construction
of the flagging threshold as a spike or dip, as opposed
to a single hour-to-hour jump.

Conditions classified as "other" in Table 2
include the following situations. In 16% of cases, MSR5
flagged a dip that was a legitimate morning low under
clear skies with calm or light and variable winds. Flags
of temperatures whose values were deemed suspicious
occurred when the rest of the record indicated no
special case for such a spike or dip. One exception
occurred in the case of a 4°F threshold, which is
approximately the minimum threshold found in this
study. Whether a minimum threshold should be set
remains to be determined. Three cases involved wind
speed variability, not as a spike or dip, but as a jump
from calm to a speed of at least 6 mph, or as a
persistent, strong wind (three consecutive hours over 20
mph). Persistent, strong winds may contribute to a
temperature spike or dip through eddy turbulence in the
downward transfer of energy, moisture, and momentum
toward the surface.

4, SUMMARY AND CONCLUSIONS

Historical hourly meteorological data, temper-
ature in particular, are widely used in climatic research.
Current efforts in extending this record backward in time
through digitization of paper forms affords a fresh
opportunity to improve the quality control of these hourly
data. The vast majority of hourly temperatures flagged
using a traditional focus on hour-to-hour jumps were
one-hour spikes or dips. In this study, therefore, a
climatology of extreme hourly temperature variability
was developed, using two new models incorporating an
explicit definition of spikes and dips as the target.
Historical data from across the United States were used
to develop and test these models and compare their
flagging performance with two traditional models.

Results indicate the new models, employing
thresholds defined in terms of spikes or dips,
determined using climatological information, and that
vary with season and over space, were more efficient
than traditional models in trapping deliberate errors
believed to mimic digitizing errors. In a sample of cases
where original data were flagged, the large majority co-
occurred with reports of a thunderstorm, heavy rain, or a
gust or shift in the wind. Inclusion of an internal
consistency check for such information in the temporal
vicinity of temperatures flagged by the MDH2 method is
recommended in the temporal consistency aspect of
quality control of these data.
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