
Figure 1.  Definition for �critical duration� (CD) for
identifying storms in a precipitation record.
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11.   INTRODUCTION

1.1 Background

Hydrological modeling for engineering design often
requires short-time increment precipitation data for use
in newer watershed models.   However, such data are
seldom available, and computer simulation of short-time
increment data is an alternative.  One approach to
simulation to meet this need is by simulating storms
rather than using 24-hr totals, which are often
disaggragated by inflexible design storms.  Instead,
actual storms start and end at any time of day and last
from a few minutes to several days.  Consequently,
simulation of short-time increment precipitation �data� on
a storm basis is needed.  The present investigation is an
exploratory study into simple parameterization methods
for purposes of identifying and simulating the occurrence
of storms.

1.2 Storm-Occurrence Characterization and
Simulation

Simulating a time series of storms includes
synthesizing a continuous record of the occurrence of
storms, storm durations, storm depths, and within-storm
intensities.  This paper specifically addresses partial

requirements for modeling and parameterization for a
storm-generator model developed by Bonta (1997 and
2001a).  The approach  is statistical and storm physics
is not considered.  Statistical characteristics for a given
location and time of year are maintained in the model.

Two characterization parameters are fundamental
for storm-occurrence simulation - �critical duration� (CD)
and average time between storms (TBS).  CD is the
minimum dry period between rainfall bursts that
separates a record of precipitation into statistically
independent storms (Fig. 1).  Dry-period durations less
than CD are incorporated into individual storms, and dry
periods greater than CD separate a historic or simulated
record into storms of varying durations.  TBS is the
average dry-period duration computed from the time-
between-storm data resulting from storm identification
using CD.  CD and TBS parameters must be
characterized on at most a monthly basis, and at
specific locations, to account for observed temporal
variations on seasonal or shorter time scales, and
spatial variations (Bonta, 2001b).
 Modeling of storm occurrence (the beginning of a
storm - month, day, year, hour, minute) involves
sampling from the exponential frequency distribution of
times between storms,

 F(TBSi) = 1 - e (-TBSi / TBS)  (TBSi >= CD)    (1)

where F(TBSi) is the cumulative distribution function
(fraction greater than), TBS is the average time between
storms, and TBSi is an individual value of TBS. 
Subsequent steps in simulation include sampling of the
frequency distribution of storm duration to advance the
simulation of storms in time, sampling of distributions of
storm depths, and finally simulation of within-storm
intensities.  More detail on these subsequent steps can
be found in Bonta (1997 and 2001a).

1.3  Objectives

The overall objective of the present study is to
investigate potential practical methods for estimating CD
and TBS that characterize the time between storms for a
given location and month.  Specific objectives are to
investigate:  1) the adequacy of regressions between
CD and average monthly precipitation (Pmo), TBS and
Pmo, and CD and TBS; and 2) the direct mapping of
TBS.  More detail one estimation of CD and TBS
discussed in this paper are found in Bonta (2002).
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Figure 2 Sample good, medium, and poor
regressions between CD and Pmo.

2.   PROCEDURE

2.1  Determination of CD - Identification of Storms

Precipitation records are composed of bursts of
precipitation (e.g., B1, B2, B3, and B4, Fig.1) and dry
times between bursts (e.g., D1, D2, and D3, Fig.1).  The
goal in the procedure is to determine the �critical
duration� (CD), such that dry times (Di) greater than CD
separate storms from one another, and dry times less
than CD are included in �storms�.  CD determined in this
manner captures spatial and seasonal variability of dry
periods that are useful for accurate simulation of storms. 

Storms were identified in the present study by using
the exponential method as described above (Restrepo
and Eagleson, 1982).  Dry times between storms (TBS)
are found in recording rain-gauge data and subjected to
a trial and adjustment process to find the CD at which
durations longer than CD form an exponential
distribution (eqn 1).  The exponential distribution has the
property that the mean and standard deviation are equal
(the coefficient of variation, CV, is unity).  CV is
iteratively computed after removing lesser TBS (CV >1)
until CV is less than unity.  This process is repeated until
CV becomes less than unity.  At this TBS, a new TBS is
interpolated between the current (TBS at CV<1) and
previous (TBS at CV>1) values, and the interpolated
value becomes the CD for the data set.  The TBS that
are greater than CD form the exponential distribution
that is used in stochastic storm simulation, and which is
characterized by the average TBS (eqn 1).  Data were
grouped by month, and the process was repeated for
each month and rain gauge selected for analysis.

2.2  Data Used

Precipitation data from National Weather Service
(NWS) 60-min recording rain gauges in the plains area
of Eastern Colorado, Southern Wyoming, and Western
Nebraska and Kansas were selected (Bonta, 2002).
May, June, July, August, and September were selected
for use in the present exploratory study to coincide with
the same months used in a study of CD by Bonta
(2001b).  A total of 34 gauges were used, covering
approximately 225,000 km2 over parts of the four-state
area (170 values each of CD and TBS). 

2.3  Regression Equations

Exploratory plotting of the data led to evaluating
rectangular- and log-log-grid equations between CD and
TBS and Pmo, and CD and TBS.  The linear form of each
equation was fitted to the data through standard
regression methods.  For CD vs Pmo, the rectangular-
grid and log-log linear equations were:

CD = aR + bR (Pmo)   (1a)

log10 (CD ) = AL + bL log10 (Pmo)   (1b)

where subscript R associates parameters with

rectangular coordinates and L associates parameters
with log-log relationships, intercepts are aR and AL =
log10(aL), and slopes are bR and bL. 

For TBS vs Pmo, the rectangular-grid and log-log
linear equations were:

TBS = cR + dR (Pmo)   (2a)

log10 (TBS ) = CL + dL log10 (Pmo)  (2b)

where intercepts are cR and CL = log10(cL), and slopes
are dR and dL

For CD vs TBS, the rectangular-grid and log-log
linear equations were:

CD = eR + fR (TBS)   (3a)

log10 (CD ) = EL + fL log10 (TBS)   (3b)

where intercepts are eR and EL = log10(eL), and slopes
are fR and fL. 

Eqns. 1b, 2b, and 3b are logarithmic forms of a
power equation.  The regressions based on the
rectangular-grid are referred to as the �rectangular�
regressions.  Units for TBS and CD are minutes and for
Pmo are mm in all equations above.

 To illustrate the degree of fit of the regressions
(best-fitted curves to one of the poorest-fitting curves),
examples of regressions for the �station analyses� were
plotted for three regressions:  the best-fitted regression
(100% of r2 values [all 34 regressions] were less than
this regression = largest r2), median (50% of r2 values
were less than this regression {17 regressions]), and
one of the poorest fits (10% of r2 values were less than
this regression - 90% were greater than this r2 [30
regressions had r2 greater than this]}. 

Computed and measured TBS and CD values by
different methods were compared by computing the
median of the absolute value of deviations between
calculated and observed values and results plotted.



Figure 3.  Three representative relationships between
TBS and Pmo.

Figure 4.  Relationship between intercept and slope
parameters in eqn. 2b.

3.  RESULTS AND DISCUSSION

3.1  Estimating Critical Duration (CD vs Pmo) 

Rectangular regression was as good as log-log
regression so only rectangular-grid regressions were
used.  The analysis yielded generally poor r2, with
values of 0.94. 0.37, and 0.009 corresponding to
cumulative r2 percentages of 100%, 50%, and 10%,
respectively.   Data for Ft. Collins, CO (Fig. 2) had one
outlier that skewed the regression line, compared with
the trend of other points at this gauge.  Data for Akron,
CO showed the best regression.  The generally poor
correlations may be due to the observed sensitivity of
the CD-estimation method to large values of TBS for a
given month (Bonta, 2001b).  This might occur because
of poor data and/or because persistent dry periods
caused by large-scale atmospheric forcings (e.g., SOI)
that would tend to mix frequency distributions of �dry�
and �normal� periods together, skewing both TBS and
CD data towards longer values.

3.2  Estimating Average Time Between Storms
 (TBS vs Pmo)

Log-log relationships consistently fitted the TBS vs
Pmo data better than a rectangular equation form.   For
example, an r2 of 0.60 or greater occurred for 94% of the
log-log relationships, compared with 85% of the
rectangular relationships.  All three example log-log
graphs (Fig. 3) appear to fit the data well.  The worst
sample regression (Garden City Station, KS - r2=0.60)
visually appears to be a good relation.  The median
example regression had a r2 value of 0.81 (Phillips, WY),
and the best regression had an r2 of 0.97 (Akron, CO). 
Regression slopes (eqn. 2b) were always negative and
varied from -2.60 to -0.80 (median=-1.09), and
intercepts ranged from 3.84 to 8.63 (median= 5.74). 
The negative slopes imply that as average monthly
precipitation increases, average time between storms
decreases.  This follows from the observation that storm
depths and durations are positively correlated (Bonta,
1998).  Therefore, if storm precipitation amounts

decrease, then storm durations decrease, and dry times
between storms increase.  The strong correlations
between TBS and Pmo suggest that PRISM Pmo maps
(Daly et al., 2000, NRCS 1998a and b) can be used to
estimate TBS for ungauged areas between stations if
regression parameters can be determined, such as by
mapping (Bonta, 2002).  This is because of the
generally good regressions found between Pmo and TBS. 
Furthermore, there is the possibility of parameter
mapping (eqn. 2b) using the PRISM model.  Mapping
the slope and intercept parameters yields two maps,
compared with five monthly maps required for the
months of May through Sept.  If a similar analysis was
expanded to the entire year, two possible maps would
be needed in place of 12 (one for each month), a
possible 83% reduction in the size of a data base
needed for estimating TBS.

It was found that slopes and intercepts in eqn. 2b
were correlated.  When intercept (CL) is graphed against
slope (dL), a strong negative correlation is apparent (Fig.
4) with an r2 of 0.99,

CL =  log10 (cL ) = 3.703 - 1.862 dL. (4)

This equation has the potential to relate slope and
intercept map surfaces over the study area.  Eqn. 4 is
encouraging for simplifying the estimation of TBS for
storm-generator purposes for any specific location.  The
correlated parameters imply that only one map is

necessary, reducing a data base needed for estimating
TBS by 50% (potentially by 11/12 compared with direct
monthly TBS mapping for an entire year).  By
substituting eqn. 4 for intercept into eqn. 2c and
simplifying, the equation for TBS (min) for a particular
month becomes:

TBS = 5047 ( 0.0137 Pmo)dL (5)

and a map of the spatial variation of the slope parameter
(dL) is required.  By solving eqn. 4 for slope and
substituting into eqn. 2b, the equation for TBS (min)



Figure 5   Comparison between measured and
computed TBS (eqn 2b).

Figure 6   Regressions of critical duration vs. average
times between storms for three example gauges.

becomes,

TBS = cL Pmo
 (1.989 - 0.537 CL) (6)

and a map of the spatial variation of the intercept
parameters in eqn 6 (cL and CL) is required.  The spatial
extent, mathematical bounds, and applicability of eqns.
5 and 6 are unknown and require further study. 
Mapping the parameters, such as potentially with the
PRISM model (as opposed to general contouring), may
improve the utility of the equations particularly in areas
with significant spatial complexity of climate such as in
mountains.  

It was found that eqn. 2b yielded better estimates of
TBS compared to TBS estimated from eqns. 5 and 6
(median deviation=768 min - Bonta, 2002).  TBS
estimates resulting from eqn 6 that required the
intercept performed slightly better than eqn 5 that
required the slope (median deviation=1089 min
compared with 1158 min).   Fig. 5 shows the scatter
between measured and computed monthly TBS using
eqn 2b.

It can be concluded that eqn. 2b links the average
seasonal climatology of the study area (in particular
average monthly precipitation) to a parameter required
for storm modeling (TBS).  Mapping using the PRISM
model to map parameters may reduce the error in
computing TBS for ungauged areas and may make eqn
2b more feasible; however, this requires further study.  A
closer investigation of the data by identifying periods of
dry-period persistence in the data (e.g., SOI) may
reduce variability in all relationships because frequency
distributions of TBS for persistently dry periods would
not be mixed with those of �normal� periods, which
currently skews the CD and TBS toward large values. 
Such data separation may lead to better correlations. 
Furthermore, a sensitivity study is required to evaluate
how much error in estimating TBS is tolerable for
specific objectives.

3.3   Estimating Critical Duration (CD vs TBS)

Log-log and rectangular-grid regressions yielded
approximately equal, acceptable frequency distributions
of r2.  Consequently, only the rectangular-grid equation
is used in further development (eqn. 3a).  The example
graphs (Fig. 6) show that the best regression was found
at Big Springs, NE (r2=0.98), the regression having 50%
greater r2 values was found at Castle Rock, CO
(r2=0.78).  While these are representative of some of the
better regressions, some regressions had r2 values as
low as 0.06.  For these few poorer regression, problems
with data or the effect of mixing exponential distributions
for different types of weather may be a factor affecting
the regressions.  For example, persistent dry periods
due to SOI may be mixed with wetter periods, skewing
the CD and TBS values.  Separating data into these
classes may improve correlations investigated in this
paper.  The strong correlation between TBS and the
climate variable Pmo, and the correlation between CD
and TBS, suggest that CD may be a predictable climate-
related variable. 

Slope parameters (eqn 3a) over the 4-state area
ranged from -0.035 to 0.291 with a median of 0.131. 
Intercept parameters ranged from -944 to 1991 with a
median of 260.  The slope parameter ranges from less-
than-zero to greater-than-zero values, suggesting that
regressions with zero slope (independence between CD
and TBS) are included in the data set.  Also, the
intercepts span zero, suggesting that CD depends only
on slope for some gauges.  Maps of the slope and
intercept surfaces could potentially be used to compute
estimates of CD at any point in the 4-state area (Bonta,
2002).  

It was found that there was an inverse relationship
between eR and fR as found above for corresponding
parameters for TBS vs Pmo (strong regression with an r2

of 0.86).

eR = 1294 - 7103 fR. (7)

Substituting eqn. 7 into eqn. 3a and simplifying yields,

CD = 1294 - fR ( TBS - 1703 ) (8)



Figure 7.  Comparison between measured and
computed CD using individual regressions (eqn. 3a)

Similarly, solving eqn. 7 for fR and substituting into eqn.
3a yields,

CD = eR + TBS ( 0.182 - eR / 7103) (9)

Eqn. 8 requires a map of slope for estimation, and eqn.
9 requires a map of  intercept over the study area
(Bonta, 2002).  These equations reduce five maps
required for CD estimation (e.g., Bonta, 2001b) to one
map of either slope or intercept, in addition to a slope or
intercept map for the TBS vs Pmo relationship, and a
map of Pmo (e.g., from PRISM) for a maximum of three
maps. 

The individual regressions (eqn 3a) are noticeably
better than the other regressions using correlated
paramters using eqns. 8 and 9.  Median deviations from
eqn. 3a was 173 min, and from eqns. 8 and 9 were 891
and 485 min.  Fig 7 shows relatively good agreement
between measured and computed CD using equation 3a
for individual gauges (all months and gauges for 170
values).  As mentioned previously, measured CD is
sensitive to large TBS values (e.g., as encountered with
persistent dry periods), and correlations may be
improved by avoiding the potential mixing of frequency
distributions of two or more distinct set of TBS data
(e.g., dry, wet, and �normal� periods).  The association
of CD with TBS suggests that PRISM mapping of CD or
its regression parameters with TBS may have potential.

4.  CONCLUSIONS

Methods were investigated to estimate critical
duration (CD - the minimum dry time between bursts of
precipitation that identify storms) and the average time
between storms (TBS -  the parameter of the
exponential distribution of times between storms).  The
study area included 34 rain gauges covering
approximately 225,000 km2 of a four-state area including
parts of Colorado, Wyoming, Kansas, and Nebraska,
and for five months from May through September.  The

following conclusions can be made:
� Individual precipitation-gauge station analysis

provided relatively good estimates of TBS and CD
using regressions of TBS vs Pmo and CD vs TBS.

� Correlated parameters reduce the number of maps
needed for estimation of CD and TBS, and
consequently of the size of a data base that could
be developed from the results in the present study. 
Slope and intercept parameters were strongly
correlated with r2=0.99 for TBS vs Pmo and r2=0.87
for CD vs TBS.

� Reduction of regression error in CD and TBS
estimation may be possible by separating data sets
based on �wet�, �dry�, and �normal� dry periods,
taking into account forcings such as SOI that cause
persistence in the data, and by mapping regression
parameters for individual stations for both CD and
TBS using the PRISM model. 

The results of this study are useful for guiding
practical parameterization methods for CD and TBS for
a stochastic storm-generator model.  The results are
also useful for other hydrological investigations such as
floods and droughts.  However, more research is
needed to improve the accuracy of the methods for
estimating CD and TBS.  This includes investigation of
climate variables other than, or in combination with,
monthly average precipitation.
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