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1.  INTRODUCTION 
 

There is an increasing demand to 
retrieve surface emissivity from the current 
suite of passive microwave instruments.  This 
will not only allow for retrieval of atmospheric 
parameters such as rainfall, water vapor, and 
cloud water; but will augment climatology of 
the variation of vegetation and soil wetness.  In 
this study we will undertake a simple linear 
regression of surface temperature, Tsfc, against 
microwave brightness temperature, TB, and 
compare the residuals against vegetation 
indices.  We will then use a simple 
approximation to estimate land surface 
emissivity.  We find that to a first order the 
surface temperature can predict the brightness 
temperature with accuracy decreasing with 
increasing frequency.  We also found the 
standard deviation of residuals from the linear 
fit have a pronounced trend compared to 
vegetation fractional coverage, and vegetation 
type. Lastly, the simple emissivity calculations 
we performed were hampered at high 
frequencies and at 22 GHz due to low 
transmittance values especially in the south-
eastern US. 
 
2.  DATA 
 

This study incorporates data from 
satellite, numerical weather model, and the 
Land Data Assimilation System (LDAS).  The 
satellite data consists of passive microwave 
brightness temperatures from three Special 
Sensor Microwave Imager (SSM/I) 
instruments, and the Tropical Rainfall 
Measuring Mission (TRMM) Microwave Imager 
(TMI).  The microwave frequencies used are 
19.35, 22.235, 37.0, and 85.5 GHz with vertical 
and horizontal polarization available at 19.35, 
37.0, and 85.5 GHz.  Both the SSM/I and TMI 
instruments have a viewing angle of 53.1 
degrees.  The ground resolution of the 
instrument is diffraction limited and 

consequently is a function of frequency.  The 
TMI instrument is in a lower orbit than the 
SSM/I, so though the antenna is the same, 
the resolution is improved.  The TMI achieves 
a resolution of ~7 km at 85.5 GHz and ~30 km 
at 19.35 GHz, while the SSM/I has a 
resolution of ~15 km at 85.5 GHz and ~60 km 
at 19.35 GHz.   

The numerical weather model used in 
this study is the Rapid Update Cycle version 
two (RUC-2).  Model analyses reported at 3-
hour intervals are used in this study.  This 
model has a resolution of 40 km, with a native 
isotropic vertical grid with a sigma coordinate 
surface.  The surface air temperature at 2 
meters is reported along with a surface soil 
temperature.  The vertical profiles of 
temperature and moisture are used to 
generate values of atmospheric transmittance.   

The land classification chosen was 
the Land Data Assimilation System (LDAS) 
developed at Goddard Space Flight Center.  
The database is static in time, at one-eighth 
degree resolution, and gives the fractional 
coverage of each grid box.  The vegetative 
fractional coverage is then subdivided into 
fourteen classes.  For this study I grouped 
some of the classes to create four coverage 
regimes.  My first regime was forest and 
included: two deciduous forest classes, two 
evergreen forest classes, and the woodland 
class.  My second regime was crop and 
included only the cropland class.  My third 
regime was grass and included:  two classes 
of grassland, two classes of shrubland, and 
the mixed cover classification.  My final 
regime was bare ground and included only the 
bare ground classification. 

All data are regridded to one-half 
degree resolution.  The satellite brightness 
temperatures, TB, and the RUC-2 model 
profiles were regridded using a Delauney 
triangulation procedure, while the vegetation 
was regridded using bilinear interpolation.  
The TB were collocated to the nearest three-
hourly RUC-2 analysis.  The surface 
temperatures were then linearly interpolated 
to the satellite overpass time, while the 
vertical profiles were left unaltered. 
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The temporal regime of this study 
included the years 1999 – 2001.  Only summer 
months June, July, and August were examined 
at this time.  This is to avoid snowy regions, 
and reduce vegetative variability. 

 
3.  PROCEDURE 
 
 The first analysis performed was a 
simple least-squares linear regression of the 
surface temperature, Tsfc, against the satellite 
brightness temperature, TB.  The coefficients of 
the regression were found by using the RUC 
surface temperature, Tsfc, as the predictor 
variable, x, and the satellite TB as the response 
variable, y.  The points in the regression where 
screened for raining pixels using a threshold 
derived from Ferraro et al. (1998).  Rain was 
assumed when 85.5V GHz dropped below 253 
K.  Once a preliminary regression was 
performed a second regression was 
undertaken, which accepted points within ±13 
Kelvin of the first regression estimate.  This 13 
K threshold is approximately three standard 
deviations of the residual.  This screening 
attempts to explore a ‘base state’ which has 
little cloud cover, average soil moisture, and an 
average column water vapor.  Figure 1 shows 
as a function of latitude, the number of points 
included in the regression calculation for 
August 2000 and 2001.  To find the regression 
coefficient, a1, can be found by dividing the 
covariance between x and y, by the variance of 
x.   

                
( )( )∑

=
−−=′′

′

′′
=

N

1i
ii

21

yyxx
N
1yx

where
x

yxa
        Eq. 1 

The y-intercept, ao, can be found by 
determining the mean of the sample x and y, 
and finding the difference of the mean y with 
the product of the mean x and the regression 
coefficient. 
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This regression procedure was applied to all 
the points in the domain over the US.  From 
these regressions a goodness of fit was 
determined using a student t-statistic.  To 
compute the t-score first the correlation 
coefficient, r, is needed.  This is found by 
dividing the covariance between x and y by the 
product of their standard deviations. 
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From this correlation coefficient a t-score can 
be found by the product of the correlation 
coefficient and the square root of the degrees 
of freedom, divided by the square root of one 
minus the square of the correlation coefficient. 
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The degrees of freedom, ν, for this study were 
estimated at 15.  This is due to the fact that 
even though there were up to eight samples in 
a single day, each was not independent.  And 
further a day-to-day correlation was assumed, 
which dropped the degrees of freedom to 
days in the month divided by 2, so 
approximately 15.  Using these t-scores, and 
testing them against a student’s t population, 
relates a confidence in how many times by 
chance a sample drawn from the population 
would give a similar result.  
 

 
 Figure 1: Average number of grid 
points as a function of latitude used in the 
regression for the month of August in the 
years 2000 and 2001. 
 
 Next, to compute a simple emissivity 
we start with an integrated form of the 
Schwarzchild equation: 
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We will ignore the contribution from space 
(the second term).  We also assume an 
isothermal atmosphere, this approximates the 
temperature in the last term with the surface 



 

 

temperature.  Using an integral constraint the 
weighting function can be approximated as: 
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This allows us to simplify Eq. 5 as: 
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This allows us to calculate surface emissivities 
using only Tsfc, TB, and atmospheric 
transmission.  The TB is taken from either the 
SSM/I or TMI instrument, Tsfc from the 
temporally and spatially collocated RUC-2 
analysis, and atmospheric transmission is 
calculated from the RUC-2 profiles of 
temperature and moisture along with an 
absorption model (Liebe, 1993). 
 
4.  RESULTS 
 

We found that the simple linear 
regression of Tsfc against TB can explain much 
of the variance seen in the brightness 
temperatures.  The t-score gives an indication 
of the width of the scatter.  A general trend 
was that the linear fit suffers in mountainous 
regions where surface variability increases, 
and temperature contrasts are more 
pronounced over a one-half degree grid box.  
The linear fit also has a decreasing confidence 
with increasing frequency.  This is due to the 
effect of the water vapor continuum effect 
increasing with frequency, and the sensitivity 
to sub-pixel storm systems, which contaminate 
the results.  

 

 
 Figure 2:  The average value of the 
residual standard deviation binned by percent 
vegetative cover, for August 2001. 
 

The residuals, the difference between 
the actual TB and the regression estimate of 
the same value, were found.  The standard 
deviation of these residuals was found as a 
function of channel.  By binning the residual 
standard deviations by vegetation fractional 
coverage (see figure 2), and by four 
categories of vegetation cover strong trends in 
the magnitude of standard deviation were 
found.  The brightness temperatures have the 
most variance in bare ground areas with little 
vegetative cover.  In these low vegetation 
areas the variation in soil moisture can create 
large changes in the ground emissivity, while 
the highly vegetated areas the microwave 
surface emission comes largely from the 
vegetative canopy.  When the values are 
calculated for a single month, and the 
vegetation changes are minimal the emission 
properties of vegetation (especially cropland 
and forested areas) do not drastically change.  
The result of a relatively static vegetative 
canopy, is a much lower variance in the 
brightness temperature residual over these 
areas.  

The emissivity estimate found 
produces some well resolved geographic 
features, along with there expected emissive 
properties.  The depressed emissivity over 
large landlocked lakes (such as Lake Tahoe), 
and river basins (such as the Missouri and 
Mississippi) due to the lower emissivity of the 
water and the surrounding lands higher soil 
moisture content.  Also desert scattering 
signals are present in the Great Salt Desert, 
the Painted Desert, and Death Valley.  The 
greatest errors occur in the south-east US 
where the atmospheric profile is very warm 
and moist.  This drives the atmospheric 
transmission down and gives the emissivities 
a low bias when using the simple 
approximation shown in Eq. 7.  

Histograms of the emissivity values 
were produced, grouped by the vegetative 
classification in the LDAS database.  Shown 
in figures 3 and 4 are the bare ground and 
forest classifications.  A larger polarization 
difference is seen in the bare ground 
classification.  The lower median value seen 
for the forest classification is quite possibly an 
effect of our approximation in Eq. 7 (an over 
correction for atmospheric water vapor due to 
the isothermal profile). 

 



 

 

 
Figure 3:  Normalized histogram of 

emissivity values over bare ground for August 
2001. 

 

 
Figure 4:  Normalized histogram of 

emissivity values over forested areas for 
August 2001. 
 
5.  CONCLUSIONS AND FUTURE WORK 
 
 The simple linear regression gives a 
robust result over much of the US with sub-
pixel contamination an increasing problem at 
85.5 GHz.  Such a regression has potential for 
rainfall monitoring over land on a point-by-point 
basis.  The correlation of the regression 
residual with rainfall from RADAR is pending.  
The emissivity calculation must be performed 
with a layered absorption model, and can 
include a first guess of Rayleigh scattering 
clouds (non-raining, small cloud drops relative 
to frequency).  The emissivities from the 
layered model can be used to generate 
covariances and correlations binned by 

vegetation type and frequency.  These 
correlations and covariances can then be 
used in an optimal estimation retrieval of 
profiles of temperature, moisture, and cloud 
liquid water along with a surface emissivity 
based on the method used by McKague 
(2001).  An independent emissivity calculation 
can be found from the forward model 
developed by Weng (2001), and the 
examination of sensitivities to soil and 
vegetation properties can be undertaken. 
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