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1. Introduction 
 

It has recently become clear that cirrus 
clouds significantly affect the global energy 
balance and climate, due to their great radiative 
impact on atmospheric thermal structure.  
Variations in the assumed cirrus radiative 
properties can significantly alter the results of 
climate models (Ramanathan et al. 1983, Liou, 
1992).  The radiative properties of cirrus depend 
on their microphysical properties such as ice 
crystal habit, ice water content and number 
concentration. Recently, Liu et al. (2001a,b,c) 
used a two-dimensional cirrus model to study the 
effects of cloud microphysical parameters on the 
cirrus development. They found that the cirrus 
development and its radiative property are 
sensitive functions of the ice crystal habit.  Their 
results show that while the habit itself has a direct 
impact on the scattering of radiation, it asserts its 
influence on the overall cirrus radiative property 
mainly via its control on the diffusional growth 
process. During this process, ice crystals of 
different habits may grow at different rates by 
vapor condensation. Thus, for example, under 
the same initial and boundary conditions, a cirrus 
cloud consisting of columnar ice crystals may 
develop different ice concentration and ice water 
content that result in a different radiative property 
than a cirrus of ice plates.  

 
In most cirrus models, the ice crystal growth 

rates is parameterized by utilizing the classical 
ice growth theory, called the electrostatic analog 
theory. In this theory, the diffusional growth rate 
of ice crystals depends on a quantity called 
capacitance, which is a function of both ice 
crystal size and habit. In order to determine the 
ice crystal growth rates in cirrus cloud models, it 
is necessary to know the values of the 
capacitance.  
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One of the most important ice crystal habits 

in cirrus is bullet rosettes (Heymsfield 1975; 
Parungo 1995). Heymsfield and Ioquinta (2000) 
reported high occurrence frequency of rosettes in 
many midlatitude cirrus, making the bullet rosette 
one of the dominant habits for the cirrus clouds 
they have investigated. Thus it is obviously 
important to know the capacitance of rosettes. 
Yet the capacitance of rosettes has never been 
determined in a rigorous way, mainly due to their 
complicated shapes that render precise 
mathematical treatment difficult. McDonald 
(1963) and Heymsfield (1975) suggested that the 
capacitance of particles with more intricate and 
spatial branches, such as rosettes, could be 
approximated as that for spherical particles of 
equal radii. Liu et al. (2001a,b,c) used this sphere 
approximation and showed that a cirrus cloud 
consisting of bullet rosettes would have much 
larger radiative effect than cirrus clouds of other 
types of ice crystals. For example, starting with 
the same initial environmental conditions, the 
rosette cirrus would have a peak heating rate due 
to infrared radiation two and half and two times 
that for cirrus of ice columns and ice plates, 
respectively, and six times that for spheres. Its 
heating rate due to short-wave solar radiation is 
also substantially greater than other habits. 
Obviously, it is important to determine the 
capacitance of the bullet rosettes more precisely 
in order to accurately assess their impact on the 
radiative heating. 

 
This paper is devoted to the task of 

calculating the capacitance of bullet rosette ice 
crystals. In the following sections, we will first 
review briefly the electrostatic analog theory of 
ice crystal diffusional growth to clarify the role of 
the capacitance. Then we will describe the 
techniques of simulating the shapes of these 
rosettes and the methods of determining their 
capacitance. This will be followed by the 
discussion of the results and their implications to 
the ice cloud development and radiative impacts. 

 
2. The Electrostatic Analog Theory of Ice 
Crystal Growth 
 

The classical theory of ice crystal growth is 
called the electrostatic analog because it dwells 
on the similarity between the equations governing 
the water vapor distribution around an ice crystal 



 

 

and the electrostatic potential distribution around 
an electric conductor of the same shape as the 
ice crystal. A detailed discussion can be found in 
standard textbooks of cloud physics (e.g., 
Pruppacher and Klett, 1997; Hobbs, 1976; 
Young, 1993) and will not be repeated here.  
 
3. Mathematical Determination of Capacitance 
 

We will determine dm/dt explicitly and 
then use the electrostatic analog to obtain the 
capacitance C.  To determine dm/dt, we need to 
solve the water vapor density distribution first.  

 
The Laplace equation will be non-

dimensionalized first for the convenience of 
analysis: 

02 =′∇ vρ  (1) 
where the primed quantity in the integrand are 
non-dimensionalized according to the following 
relations: 
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where a is the radius of the ice crystal and r 
represents the radial distance from the origin, 
which is defined as the center of the ice crystal in 
the present study. The radius of the rosette 
considered here is defined as the distance from 
the center of the rosette to the tip of one of the 
lobes. We assume that all lobes have the same 
length in this study. 
 

Once the vapor density distribution vρ′  
is determined, the capacitance is obtained by  
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Smythe (1956, 1962) and Wang et al. (1985) 
performed similar calculations to determine the 
capacitance of right circular cylinders of finite 
lengths but they solved the Lapalce equation 
analytically. In the present study, we will use 
numerical techniques due to the complicated 
shapes of the rosettes. 
 
 We need first to define appropriate 
boundary conditions for our numerical problem. 
Since the capacitance is a function of the 
positions of these boundaries, the capacitance of 
an isolated conductor will be different from the 
same conductor when it is placed near another 
charged body with finite potential. In atmospheric 
clouds, the mean distance between individual 
cloud particles is rather large relative to the 

particle size, typically on the order of many tens 
to hundreds particle radii (Prupppacher and Klett 
1997). This means that the ice particles can often 
be considered as isolated individual particles, 
and hence the most relevant capacitance for our 
purpose here will be that of an isolated ice 
crystal. Thus the appropriate boundary conditions 
for the present situation are:  
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4. Treatment of the Boundary Conditions 
 
The inner boundary 
 

We use numerical methods to solve Eq. 
(1) subject to the boundary conditions (4). 
Specifically, we will use the finite element 
techniques for solving the Lapalce equation. This 
requires the setup of a grid system. The first step 
is to prescribe the boundary points.  

 
The inner boundary is the surface of the 

bullet rosette. The shape of a bullet rosette is 
highly complicated and it is not easy to determine 
the coordinates of the boundary surface. To 
simplify this problem, we use the mathematical 
expression given by Wang (1998) to approximate 
such a shape: 
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    (5) 
This equation is expressed in spherical 
coordinates so that r is the radial, θ  the zenithal,  
and ϕ the azimuthal coordinates. The parameters 

δγβαδγβα ′′′′  and  , , , , , , ,  are freely 
adjustable so as to fit the shape of a particular 
rosette.  The shape generated by this expression 
will have 2mn lobes or branches. For example, a 
four-branch combination of bullets can be 
generated by the following expression: 
r = − −[ cos( ) ] [ sin( ) ]1 2 14 20 4 20θ ϕ  

     (6) 
where m=2 and n=1 here.  The width of the 
branch is controlled by β and β′ in Eq.(5). We 
understand that some of these are not good 
approximations of the real rosettes. Obviously it 
is impossible that such a simple expression will 
reproduce all the intricate structures of bullet 
rosettes, but at least it captures the essential 
multi-lobe feature that is the characteristic of 
these ice crystals.  
 
The outer boundary 
 



 

 

 Although the inner boundary of the 
problem is not spherical symmetric, the outer 
boundary of the present problem, if set at infinity, 
will be a sphere, as the distribution of any field 
whose source is finite (such as the rosette 
considered here) will become spherically 
symmetric when the distance approaches infinity. 
However, in numerical calculations, the distance 
of the outer boundary has to remain finite and 
hence the field distribution here may deviate from 
a true sphere. In the present study we assume 
that this finite outer boundary is also spherical. In 
order to assess the impact of this assumption on 
the accuracy of the results, we performed 
sensitivity tests for the outer boundary distance. It 
turns out that the results are not very sensitive to 
the outer boundary distance as long as it is a few 
radii away from the center of the crystal.  
 
 The details of the discretization 
technique using the finite element method can be 
found in standard textbooks on finite element 
analysis. 
 
5. Results and Discussions 
 
The capacitances of seven bullets rosette ice 
crystals are calculated by using the numerical 
techniques as outlined in the previous section. 
These rosettes consist of two, three, four, six, 
eight, twelve and sixteen lobes. The choice of the 
rosette cases was based on the simplicity for the 
calculations because of their geometrical 
symmetry. The mathematical expressions for 
these rosettes and their shapes are shown in Fig. 
1. The values of the adjustable parameters are 
chosen so that the thickness of the lobes looks 
visually reasonable. Due to the limitation of the 
formulas, it is difficult to obtain a symmetric 
shape for each lobe. Thus sometimes the 
dimension of the lobe in the θ-direction is 
substantially different than that in ϕ-direction. But 
the multi-lobe characteristic of the rosettes is well 
reproduced. The crystals generated in this way 
have the lobes of equal length a. Also shown in 
Fig. 1 are the total surface areas, volumes, and 
the cross-sectional areas projected in the x-, y-, 
and z-axis.  
 
Capacitances of Rosettes 
 

The computed capacitances of the 
rosettes as a function of the number of lobes are 
shown in Fig. 2. It is unclear at the moment 
whether the slight scatter in the results is due to 
the numerical errors or the results of the shape 
parameters in Eq. (5) chosen or both. However 
the general trend of the curve is fairly clear and 
the scatter should not influence the conclusions 
to any significant extent. 
 

It is seen in Fig. 2 that the rosette 
capacitance increases from about 0.5 to near 0.9 
(in unit of a) as the number of lobes increases 
from 2 to 16. The capacitance of a conducting 
sphere is its radius a. Thus it appears that the 
capacitance of a rosette will approach that of a 
sphere if the number of lobes approaches infinity, 
i.e., as its shape approaches a sphere.  The 
following power relation can fit the rosette 
capacitance curve in Fig. 2: 

 
257.0434.0 NC =     (7) 

 
where C is the capacitance in unit of a and N the 
number of lobes.  

 
 Fig. 2 thus shows that the capacitance 
of a rosette is smaller than that of a sphere of 
equal radius. This implies that calculations of the 
rosette growth rate based on the spherical 
capacitance assumption overestimate. The 
overestimation is the most serious for rosettes 
with fewer lobes but becomes less so if the 
number of lobes is large. 
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Fig. 2. Capacitance of rosettes vs. # of lobes 
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( )[ ] ( )[ ]204204 sin1cos1 ϕθ −−= ar  

2897.2 aS = , 3502.0 aV =  
2744.0 aSz = , 2245.0 aSx = . 2744.0 aSy =  

 
( )[ ] ( )[ ]154154 5.1sin1cos1 ϕθ −−= ar  

2825.3 aS = ,  3581.0 aV =  
2807.0 aSz = , 2877.0 aSx = , 2674.0 aS y =  

 
( )[ ] ( )[ ]104104 2sin1cos1 ϕθ −−= ar  

2083.5 aS = ,  3713.0 aV =  
2899.0 aSz = , 2025.1 aSx = , 2025.1 aSy =  

 
 

 
 

 
( )[ ] ( )[ ]5454 5.1sin12cos1 ϕθ −−= ar  

2831.5 aS = ,  3761.0 aV =  
2649.0 aSz = , 2451.1 aSx = , 2403.1 aSy =  

 
 

 
( )[ ] ( )[ ]5454 2sin12cos1 ϕθ −−= ar  

2749.6 aS = ,  3761.0 aV =  
2654.0 aSz = , 2401.1 aSx = , 2401.1 aSy =  

 
 

 
( )[ ] ( )[ ]2424 2sin13cos1 ϕθ −−= ar  

2160.10 aS = ,  3182.1 aV =  
2309.1 aSz = , 2679.1 aSx = , 2685.1 aSy =  

 

 

 
 
 

 
 
 
 
 
 

Fig. 1. The seven bullets rosette ice cry
formulas . 

 

 

 
( )[ ] ( )[ ]ϕθ 2sin14cos1 44 −−= ar  
2235.14 aS = ,    3656.1 aV =  

2485.1 aS z = , 2959.1 aSx = , 2959.1 aSy =  
 
 

stals considered and their generating 
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