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A great deal of work has been devoted in the last
decade to identify whether or not the spatial posi-
tions of cloud particles are statistically correlated.
If, in fact, spatial correlations do exist there could
be consequences in radiation attenuation (Kostinski
(2001) and Shaw et al. (2002a)) and collision rates
(note the assumption of independent and identically
distributed spatial positions of droplets in Saffman
& Turner (1956)). Although quite varied theoretical
tools have been utilized in attacking this problem,
many of them are fundamentally related in ways that
have not been explicitly noted. In studying the ana-
lytic connections between these methods, a great deal
of physical intuition and knowledge about the limita-
tions of the statistics in question can be acquired.

More specifically, the tools of the pair-correlation
function [η(r)], clustering index [CI(r)], volume-
averaged pair-correlation function [η(r)], autocorre-
lation function [ρ(r)], and power spectral density
[P (k)] are analyzed here. Most of these methods
have been used recently to characterize correlations
in spatial positions of cloud droplets. In the inter-
ests of brevity, the relative merits of these statistics
will not be addressed here. A more thorough litera-
ture review and careful analysis can be found in Shaw
et al. (2002b). Representative papers are: Kostin-
ski & Jameson (2000); Kostinski & Shaw (2001)
(pair-correlation function), Baker (1992); Chaumat
& Brenguier (2001) (clustering index), Jaczewski &
Malinowski (2000) (volume averaged pair-correlation
function), and Gerber et al. (2001) (power spectral
density). The pair-correlation function, η(r), (or in
the fluids literature, the radial distribution function
g(r) ≡ η(r) + 1) is an ideal measure to identify scale-
localized correlations because of its memoryless char-
acter. Each of the other variables, with the exception
of ρ(r), is fundamentally defined through an integra-
tion process, thus introducing cumulative scale mem-
ory to these statistics. The auto-correlation function,
ρ(r), does not fall to this criticism, but technically
is only well-defined for continuous variables. Since
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cloud particle existence is inherently a point process
(either a droplet is present or it is not), the language
of the pair-correlation function is more natural.

In addition to the benefits mentioned above,
there exist simple relationships between the pair-
correlation function and the other mentioned cloud
clustering statistics Shaw et al. (2002b). Briefly, η(r)
is related to η(r) and CI(r) through the use of the
Ornstein-Zernike equation (or correlation-fluctuation
theorem); η(r) is related to ρ(r) through a multi-
plicative parameter; and ρ(r) is related to P (k) via
the Wiener-Khinchin theorem. Because of the fact
that η(r) has no memory, the value of η at a given
spatial scale has a clear physical meaning. The pair-
correlation function is defined as the scale-localized
deviation from an uncorrelated (Poisson) stationary
process.

Specifically, consider volume elements dVi of mag-
nitude small enough such that the number of parti-
cles given in the volume is merely n̄dVi where n̄ is
the mean droplet number density. Then if no corre-
lations exist on scale r, one would expect the proba-
bility that there exist droplets in both dV1 and dV2

(without correlations) to be given by

Pr(1, 2) = (n̄dV1) (n̄dV2) . (1)

We then define η(r) through

Pr(1, 2) = (n̄dV1) (n̄dV2) [1 + η(r)] . (2)

so that η(r) is a direct measure of the scale deviation
from pure (Poisson-distributed) randomness. Per-
haps more simply, η(r) can be computed as the num-
ber of detections observed distance r apart, divided
by the number expected for a completely random
distribution (with unity subtracted off of this quan-
tity) (for a more detailed explanation, see Kostinski
& Jameson (2000), Kostinski & Shaw (2001), and
Shaw et al. (2002b)). Operationally, then, η(r) can
be written as

η(r) =
N(R)N(R + r)

N
2 − 1 (3)
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Figure 1: Upper Left Statistically homogeneous Poisson process. Particle positions are independent of any
correlations. Lower Left Statistically homogeneous but correlated random process. Particle positions are
correlated (i.e. not independent). Upper Right Statistically inhomogeneous Poisson process. A physical
example would be an ideal gas of molecules subject to gravitation. Lower Right An introduction to the
notion of pair-correlation; see text for description.

which is directly linked to the autocorrelation func-
tion, though care must be taken in remembering that
detection of a cloud droplet is a point process.

Due to the fact that the pair correlation function
provides a direct measure of the deviation from pure
randomness, η(r) carries with it physical meaning
while avoiding ad hoc assumptions about the origin
or magnitude and shape of correlations; this point,
though subtle, is one of the reasons that the pair-
correlation function is best suited to classification of
stationary point processes and is applicable here. Be-
cause of the scale-localized character of the measure-
ment, it seems likely that the pair-correlation func-
tion will be able to be incorporated directly into an-
alytic expressions for physical processes. Some work
in applying this notion to collision rates in a dilute
medium has already been completed by Sundaram &
Collins (1997) and in coagulation of aerosol particles
by Kasper (1984).

We have noted that this method of correlation is
fundamentally different than some other commonly
used approaches. Figure 1 gives a simple demon-
stration how this is so. The upper-left hand panel
shows a small cell out of a “perfectly random” distri-
bution. As such, there are no correlations on all scales

(i.e. particle positions are independent), the statisti-
cal moments are independent of the origin, and the
particle positions are uniformly distributed through-
out the volume.

The lower-left hand panel demonstrates the notion
of a homogeneous, but not Poisson, distribution. In
this distribution, moments are still independent of
the origin, and the distribution is still uniform with
the caveat that the particle positions are not inde-
pendent; the placement of each particle is correlated
to the other particles in the distribution. In making
such a distribution, the particles will (for positive cor-
relations) inevitably form clumps, but the position of
the clumps are unpredictable in space, thus assuring
statistical homogeneity (or stationarity).

The upper right panel represents the underlying
model for an alternate approach to classifying cor-
relations – the notion of an inhomogeneous Poisson
process. In such a distribution, the local number
density is fundamentally a deterministic (hence pre-
dictable) process, and not independent of the origin.
In order to use this approach, it must be possible
to model the large-scale variations deterministically.
Pawlowska et al. (1997) and Pinsky & Khain (2001)
are representative papers that utilize such a model of



an inhomogeneous Poisson process.
The lower right panel of the figure is a visual tool

for better understanding the pair-correlation func-
tion. The first point (A) is placed completely at ran-
dom within a volume. The following particles then
have an ‘biased’ probability of being at point B, a
distance r away from A, enhanced (or repressed) by
a factor of (1 + η(r)) multiplied by the probability of
being at point B devoid of any correlations. If η(r) is,
for example, a positive but monotonically decreasing
function of r, clumps like those in the lower left panel
of figure 1 result.

To further illustrate the points above, numerical
examples and data-analysis were carried out in both
Kostinski & Shaw (2001) and Shaw et al. (2002b). In
the former, a numerical simulation is used to demon-
strate how the use of statistics with memory, espe-
cially when coupled with a finite-resolution probe,
can suppress detection of real coherence. In both of
these studies, data analysis on data gathered by the
Fast-FSSP (forward scattering spectrometer probe)
was analyzed, revealing evidence of mild, but exis-
tent, correlations on some scales (even in regions of
the cloud that visually appeared stationary and com-
pletely random). Whether or not the magnitude of
these correlations is negligible has not yet been fully
determined. At this point, more careful investigation
as to the implications of short-scale droplet clustering
on the theories of cloud evolution and radiative trans-
fer are warranted; it seems quite likely that further
investigation will yield non-negligible short-scale cor-
relations, and preliminary studies indicate that the
effects of even mild clumping can be quite extreme
when incorporated into rate-governed processes.
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