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Exponential decay of radiation, described by the
Beer-Lambert law, is of central importance in atmo-
spheric radiative transfer. In the atmosphere, and
especially for radiative transfer in clouds, there are
physical scenarios where deviations from the Beer-
Lambert law are expected (Barker, 1992; Cahalan
et al., 1994; Davis and Marshak, 1997; Marshak et al.,
1998; Weinman and Harshvardhan, 1982). It was
shown in (Kostinski, 2001), using the language of
the Poisson process, that correlations in the posi-
tions of particles in a random medium (e.g., droplets
in a cloud) can lead to slower-than-exponential (sub-
exponential) extinction of intensity with propagation
depth. In this approach, exponential decay arises in
a special case when the medium contains no corre-
lations. A third possibility is that of negative cor-
relations, which can lead to faster-than-exponential
(super-exponential) extinction (Shaw et al., 2002).

Here we describe recent Monte Carlo studies of
radiative transfer in an absorbing medium. The
results confirm that sub-exponential decay occurs
when the volume-averaged pair correlation function
is greater than zero at the scale of interest and that
the Beer-Lambert law is recovered when correlations
vanish. Also, when the volume-averaged pair correla-
tion function is negative super-exponential extinction
with propagation distance occurs. These results are
of special interest to the problem of radiative trans-
fer in cloudy atmospheres, where the pair correla-
tion function previously has been shown to be neg-
ative and positive at different scales (Kostinski and
Shaw, 2001). For example, a turbulent mixing zone
characterized by a −5/3 scalar spectrum may possess
strong positive correlations in particle position. On
the other hand, sedimenting particles in a laminar
fluid possess strong negative correlations in particle
position (Lei et al., 2001), and an atmospheric exam-
ple might be droplets in a calm fog. It also is a simple
matter to conceive of macroscopic cloud geometries
that would possess either negative or positive correla-
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tions (e.g., cellular convection versus turbulent mix-
ing at cloud top).

Extinction in a correlated medium:
Theory

To begin with, we consider a random medium con-
sisting of absorbing particles. To obtain deviations
from the Beer-Lambert law, it is necessary to intro-
duce correlations among positions of particles in the
medium. Note that, in spite of correlations, the dis-
tribution of particles is still regarded as statistically
homogeneous so that all moments (e.g., mean and
variance) are invariant with respect to the shift of
origin. Examples of spatially correlated particle dis-
tributions are shown in Fig. 1, which will be discussed
in more detail later. Briefly, the left panel shows
negatively-correlated particle positions, the middle
panel shows uncorrelated particle positions for refer-
ence, and the right panel shows positively-correlated
particle positions.

For the radiation extinction problem we must con-
sider two ‘countable’ random variables: the number
of particles or obstacles k, and the number of photon
absorption events n. The degree of spatial correlation
between particles is quantified by the pair correlation
function, η(r) (Larsen et al., 2002). For uncorrelated
particle positions η(r) = 0 for all scales. When η 6= 0
the conditional probability of finding a second parti-
cle at a distance r from the first one is enhanced or
inhibited by a factor of (1 + η(r)).

The spatial correlation of particles is related to
the variance of particle counts in a fixed volume by
(Kostinski, 2001)
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where δK ≡ K − K̄ is the deviation from the mean
count in a given volume V and K̄ = k̄V where k̄
is the local mean concentration. After multiplying
both sides of Eq. (1) by K̄ and rearranging we ob-
tain (δK)2 = K̄ + η̄K̄2, where η̄ = V −1
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the volume-averaged pair correlation function. In the



Poissonian case, η = η̄ = 0, and this gives the well-
known result that (δK)2 = K̄ for a Poisson distri-
bution. We note that the variance of counts can be
less than or greater than K̄, depending on the sign
of η̄. Indeed, η̄ is negative at all scales for negatively
correlated particle positions such as shown in the left
panel of Fig. 1, and η̄ is positive at all scales for pos-
itively correlated particle positions such as shown in
the right panel of Fig. 1.

In (Kostinski, 2001) it was argued that variance of
particle counts is related to the rate of extinction of
radiation. As a specific example, super-Poissonian
variance arising when η̄ > 0 was shown to result
in slower-than-exponential extinction. Similarly, sub-
Poissonian variance of obstacle number yields faster-
than-exponential attenuation (Shaw et al., 2002). To
understand these results we consider the relevance of
the Poisson process to the Beer-Lambert law of ex-
ponential extinction. We assume perfect randomness
in the distribution of obstacles so that the number of
absorbed photons obeys the Poisson distribution:

pn(x) =
n(x)

n
exp(−n(x))

n!
, (2)

where n is the random number of absorbed photons
in the test volume per unit time, pn(x) is a probabil-
ity of having n photons absorbed in a given volume
of a layer of depth x, and n(x) is the mean count
over many realizations as a function of the depth x
into the slab. Next, we consider the photon prob-
ability of transmission (no extinction) through the
layer of depth x. That is, we need to find p0(x)
from Eq. (2) by setting n = 0 (n̄ held constant):
p0(x) = exp−n(x) = exp−x/λ, where λ−1 = σk̄
with λ, σ and k̄ being the mean free path, extinc-
tion cross-section per obstacle, and obstacle concen-
tration, respectively. Now, using the law of large
numbers to interpret p0(x), we can rewrite p0(x) as
Ntr/Ninc = exp−x/λ, which is the stochastic equiv-
alent of the Beer-Lambert law. Here, Ninc and Ntr

stand for the (large) number of incident and trans-
mitted photons, respectively and x/λ is the unitless
optical depth.

In Eq. (2) we used the fact that the number of ab-
sorbed photons (at a given location) is Poisson dis-
tributed because the number of obstacles is Poisson
distributed. If, however, the number of obstacles is
not Poisson-distributed, then pn(x) will also change.
For example, if the variance in the number of obsta-
cles decreases, so does the variance in the number
of absorbed photons n. This means that the distri-
bution p(n) gets narrower (only ‘well-behaved’ den-
sities are considered for the moment). Qualitatively,
we expect that p(0) will decrease as well because a
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Figure 1: Thin slices (slice thickness is 1/10th the
width shown), with n and σ the same in all cases,
showing particle positions in typical realizations of
the Monte Carlo model. Note that in all three panels
the box width is equal to one free path, defined as
1/nσ. The first panel corresponds to negatively cor-
related particle positions, achieved by specifying an
‘excluded volume’ around each particle. The second
panel is for a completely uncorrelated medium, i.e.,
Poisson process. The third panel is for positively cor-
related particle positions, achieved via an exponential
conditional probability of particle position.

narrower pdf will have ‘lower tails’. Therefore, at a
fixed mean free path, the numerical value of the nar-
row (sub-Poissonian) pdf produces lower p(0) than
does the Poissonian case. Furthermore, the argument
holds at any n̄ which, in turn, depends linearly on
x, penetration distance into the medium. Hence, we
conclude that negative correlations yield faster-than-
exponential extinction. Analogous arguments hold
for positive correlations and slower-than-exponential
extinction.

Monte Carlo model and results

To test the theory outlined in the previous section,
we built a straightforward Monte Carlo model that
performs two functions. First, the model generates a
random distribution of particle positions, which may
be spatially correlated: this gives us variable k. Sec-
ond, the model calculates a distribution of photon ab-
sorption events by ‘shooting’ photons through the dis-
tribution of particles: this gives us variable n. These
procedures are described briefly below and additional
details are available in (Shaw et al., 2002).

Three different types of particle distributions are
shown in Fig. 1. Each panel is a thin slice (slice thick-
ness is 1/10th the width shown) taken from one real-
ization of particle positions generated by the model.
The middle panel shows particle positions that are
uncorrelated at all scales, or Poisson distributed. The
Poisson distribution is made by selecting each parti-
cle’s coordinate independently and at random from a
uniform pdf. Thus each particle’s position is uncor-
related with that of any other. The left panel shows
particle positions that are negatively correlated over



a wide range of scales. Negatively correlated distri-
butions can be made by randomly selecting particle
positions inside the box, but rejecting any position
that is less than a specified distance away from any
other previously placed particle. The right panel of
Fig. 1 shows positively-correlated particle positions,
achieved by using a conditional pdf to select a random
distance from the most recently placed particle to the
next particle’s location. The scale-dependence of spa-
tial correlations between particles is found by calcu-
lating the pair correlation function η(r), where r is
the radial distance from one particle to another. For
a distribution such as in the middle panel of Fig. 1,
η(r) = 0 for all r. For the right panel showing the
positively-correlated model, η(r) ≥ 0 for all r. For
the ‘excluded-volume’ model shown in the left panel
of Fig. 1, η(r) = −1 for r ≤ r◦ and the volume-
averaged pair correlation function η(r) is negative at
all scales.

Once a particle distribution is generated, the ex-
tinction of radiation is calculated by shooting photons
through the volume and keeping track of the number
of photons remaining as a function of propagation
depth x. Since the incident radiation is assumed to be
incoherent, it could be represented by randomly posi-
tioned photons travelling along straight trajectories,
all parallel to each other, until one passes through a
particle and an absorption event occurs. All particles
(obstacles) were assumed to be perfectly absorbing,
so no scattering needed to be considered. In addition,
all particles were assumed to have the same absorp-
tion cross section, σ.

All three particle distributions had an average par-
ticle density, k̄, of 1000 particles per unit volume.
The value of σ was then chosen to be 10−3 so that
the optical depth, λ = σk̄ would be unity. For each
distribution, 106 randomly positioned photons were
sent into the particle cloud and ‘measurements’ of the
number of photons that were not absorbed were made
at several depths, yielding an extinction rate. Re-
sults for the three particle distributions are shown in
Fig. 2, where the logarithm of relative intensity I/I◦
is plotted against propagation distance normalized by
the mean free path x/λ. Lack of spatial correlations
faithfully reproduces the exponential decay predicted
by the Beer-Lambert law, with λ−1 = k̄σ. Extinc-
tion of radiation propagating through the positively-
correlated particle distribution is significantly slower
than the Beer-Lambert law would predict. Finally,
the model confirms that for negatively-correlated par-
ticle positions (more precisely, for η̄ < 0) the rate of
extinction of radiation is faster than expected from
the Beer-Lambert law.

While the extinction rate shown in Fig. 2 for the
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Figure 2: Relative intensity plotted as a function
of propagation depth, calculated with the Monte
Carlo model described in the text. The middle
curve (solid) is for the uncorrelated medium and is
identical to that expected from the Beer-Lambert
law. The top curve (dot-dashed), representing slower-
than-exponential decay, is for the positively corre-
lated medium. The bottom curve (dashed), repre-
senting faster-than-exponential decay, is for the neg-
atively correlated medium.

negatively-correlated particle distribution is faster
than the expected rate based on the particle number
density and cross section, further examination reveals
that after a transient regime the extinction rate does,
in fact, approach negative exponential (e.g., it is a
straight line in Fig. 2). A similar approach to expo-
nential extinction, but with a modified optical depth
λ∗ > λ, occurs for positively-correlated particle posi-
tions characterized by a ‘short-range’ pair correlation
function. Qualitatively, the final exponential extinc-
tion with an ‘effective’ cross-section results when all
scales with non-zero correlation are averaged over.

These results are of special interest to the problem
of radiative transfer in cloudy atmospheres, where the
pair correlation function previously has been shown
to be negative and positive at different scales. Addi-
tional work on relating the extinction rate and ‘effec-
tive’ optical depth to the pair correlation function is
ongoing. This work must be done in conjunction with
theoretical and observational studies to understand
the scale dependence of the pair correlation function
for particles in atmospheric clouds.
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