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1. INTRODUCTION 
 

Despite the deicing capabilities of modern aircraft, 
crashes still occur in icing because engineers cannot 
test for all possible conditions. Also, forecasts are still 
not sufficiently accurate to allow aircraft to always avoid 
icing. As a result, a government team is developing ra-
dar and microwave radiometer technologies for remotely 
mapping hazardous icing conditions ahead of aircraft 
(Ryerson et al., 2001). Establishing the capabilities of 
such systems requires consideration of the spatial prop-
erties of the cloud microphysical environment they must 
measure. Also, spatial fluctuation of cold, supercooled 
cloud microphysics affects the type and location of ice 
formation on airfoils, thereby strongly affecting aircraft 
performance. 

This paper describes methods we use to character-
ize spatial patterns of cloud liquid water content (LWC) 
in supercooled clouds. Analyses were performed on 
data collected by the NASA Glenn Research Center. 
 
2. BACKGROUND 

 
Clustering refers to clumping, or patchiness, in 

cloud microphysical properties, and implies that con-
secutive values of cloud properties correlate over a dis-
tance. Unlike a Poisson series where individual values 
in a series are independent and not correlated with one 
another, in a clustered data series values are not inde-
pendent (Jameson and Kostinski, 2000). 

The ability of remote sensing systems to reliably 
detect icing conditions ahead of aircraft requires that 
cloud microphysical properties be accurately character-
ized. Clustering of cloud properties may affect the ability 
of radar to detect and measure cloud LWC, the primary 
cause of icing on aircraft (Martner et al., 1993). Cluster-
ing may also make aircraft icing more dangerous, fur-
ther justifying the need for remote sensing systems to 
operate reliably in clustered conditions. Clustering may 
cause alternating low and high LWC, which may cause 
rime icing in some clusters and glaze icing in others as 
the Schumann–Ludlam Limit is crossed, forming ice 
shapes that destroy aircraft aerodynamics. 

Clustering of cloud microphysical parameters was 
examined by Cooper et al. (1982) by summarizing ex-
ceedance of LWC thresholds by season. Cober et al. 
(1995), with a similar procedure, describe the patchi-
ness of supercooled liquid water encountered in the 
Canadian Atlantic Storms Project (CASP) using histo-
grams of encounter number versus duration for patches 
of LWC greater than 0.025 g m–3. 

Considerable research has addressed the fluctua-
tions of droplet size and LWC at small scales within 
clouds to assess turbulence, cloud evolution, and the 
radiative properties of clouds (Davis et al., 1999; Caha-
lan and Joseph, 1989; Korolev and Mazin, 1993). How-
ever, for our work the most appropriate analysis meth-
ods are presented by Jameson and Kostinski in a series 
of papers beginning in 1997. One of their recent papers 
(Jameson and Kostinski, 2000) describes the applica-
tion of their techniques to synthetically derived icing 
cloud series. 
 
3. METHODOLOGY 
 

By definition, cloud microphysical properties that 
are not clustered exhibit a Poisson distribution. There-
fore, the first step in an analytical approach involves 
determining if clustering occurs in a data series. Kostin-
ski and Jameson (1997) show that a two-point autocor-
relation function, as given in equation 1, can be used to 
determine the presence of clustering: 
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where µ is the mean of the series, and k(0) and k(l) are 
the values at the reference location (time) and distance 
(time), respectively, at a distance (seconds) from the 
reference. If clustering does not occur and all values in 
the series are statistically independent, or Poissonian, 
the mean of the series equals the variance 
( ) ( ) 20 µ=klk  and the two-point autocorrelation func-

tion, ( )lη , is equal to zero. 
The second step is to specify the “average size” of 

the clusters. The average scale or size of clusters, de-
fined as the coherence length, χ(l), is the length at which 
the autocovariance function equals 1/e, where e is the 
base of the natural logarithm and 1/e = 0.3679 
(Jameson and Kostinski, 2000). The autocovariance, 
CD(l), is defined as  
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where σ2 is the variance for the data series. 
In the final step, a clustering intensity parameter, א, 

is determined as suggested by Jameson and Kostinski 
(2000) as 
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The clustering intensity parameter depends on the 
value of the two-point autocorrelation function at zero 
lag length and the mean and variance associated with 
the data series. The clustering intensity provides insight 
into the magnitude of the values associated with cluster-
ing relative to the mean (see Jameson and Kostinski, 
2000, Figure 4). In a Poisson distribution where cluster-
ing does not occur, the clustering intensity is zero. This 
follows directly from the fact that in a Poisson distribu-
tion the mean equals the variance, where the last term 
in equation 3 will equal one, and the corresponding clus-
tering intensity will be zero. The clustering intensity in-
creases as the variance increases relative to the mean 
for a given value of the two-point autocorrelation func-
tion. Two data series can have the same mean, but the 
series that contains values that differ the most from the 
mean will have the greatest clustering intensity.  

During our analyses we observed that cluster inten-
sity and correlation length are dependent on start and 
end points along the series because the series are non-
homogeneous. This was investigated by systematically 
varying the length of individual flight segments as well 
as start and stop points. Inclusion or exclusion of cluster 
elements into the flight segment change the “bulk” clus-
ter length and cluster intensity properties. To address 
this, we computed bulk χ(l) and א, and also computed a 
time-varying χ(l) and א through each flight segment using 
a process described below for segment lengths that are 
representative of remote sensing system ranges. 
 
4. INFLIGHT MEASUREMENTS 

 
The NASA Glenn Research Center conducted the 

Supercooled Large Drop Research Program (SLDRP) 
(Miller et al., 1998) to characterize supercooled large 
drops (SLD) aloft, freezing rain, and freezing drizzle. 
This paper uses 33 selected segments of 25 SLDRP 
flights from both winters. A total of 14.9 hours of flight 
time was captured in the flight segments, which aver-
aged 27 minutes in duration, or 115.5 km each (Table 
1). Dependence of LWC variability on height above 
cloud base (or below cloud top) led us to seek flight 
segments that occurred at a nearly constant altitude.  
However, aircraft position with respect to cloud bounda-
ries is unknown for any single measurement. 

LWC measurements were obtained from a CSIRO-
King hot wire probe mounted on the top of the aircraft 
nose. LWC is supplied at 1-sec intervals. Flight seg-
ments had no breaks in cloud and  were as long as pos-
sible to provide the best cluster statistics. Also, several 
segments had periods removed where the aircraft 
changed altitude for short periods (Table 1). 

 
5. ANALYSES 

 
We analyzed the NASA flight measurements in two 

different ways. First, we used the Jameson and Kostin-
ski techniques to assess the clustering characteristics of 
LWC for each entire flight segment. This provided bulk 
cluster statistics for each of the 33 flight segments. To 
assess variability in short distances, we applied the 
same methodology to assess short sub-segments of 

flight, representing the range of a remote sensing sys-
tem, and created time-series of cluster intensity and 
cluster length through flight segments. 

 
Table 1. Flight segment characteristics. Trailing letters 
a, b, or c following flight segment identifiers indicates 
multiple segments of one flight. 
 

Flight 
segment 
identifier 

 
Length 
(km) 

LWC
mean 
(gm–3) 

LWC
χ(l) 

(km) 

 
LWC
 א

970115f1 173.7 0.10 1.0 0.21 
970115f2a 103.6 0.03 0.07 0.34 
970115f2b 60.2 0.03 0.07 0.52 
970122f2 58.2 0.20 5.5 0.27 
970124f1 120.3 0.05 3.9 0.24 
970124f2a 87.8 0.07 5.4 0.66 
970124f2b 65.8 0.08 6.7 0.47 
970124f2c 131.4 1.83 4.0 0.24 
970127f1 94.0 0.13 6.3 0.41 
970204f2 122.0 0.13 1.4 0.66 
970306f2 78.1 0.11 0.8 2.16 
970311f3 105.2 0.18 0.9 0.37 
970314f2 184.1 0.15 19.7 1.59 
971209f1 118.1 0.77 1.9 1.17 
971209f2 71.5 0.96 18.9 0.19 
971211f2 75.5 2.01 18.8 0.29 
980122f1 96.0 0.11 2.7 0.47 
980126f2 214.5 0.12 5.4 0.54 
980126f3 103.8 0.16 7.3 0.90 
980130f1 88.3 0.09 3.2 0.44 
980204f1a 209.7 0.03 0.7 0.06 
980204f1b 170.4 0.20 0.8 0.21 
980204f2 290.2 0.22 13.0 0.36 
980204f3 51.8 0.05 17.3 0.33 
980205f1 125.1 0.09 4.6 0.41 
980205f2 73.8 0.02 1.0 0.26 
980212f1 112.2 0.20 38.6 0.18 
980224f1a 60.7 0.14 8.0 0.84 
980224f1b 132.9 0.10 3.1 0.86 
980227f1 163.9 0.27 1.8 0.59 
980302f1 106.4 0.05 0.7 1.77 
980318f1a 93.1 0.04 1.1 0.87 
980318f1b 69.7 0.03 0.4 0.49 

 
Bulk LWC cluster intensity, א, as measured over 

each of the entire flight segments, varies from a low of 
0.06, indicating almost no clustering, to a high of 2.16 
(Table 1). The majority of bulk cluster intensities are 
less than 0.6, with only four intensities greater than 1.0. 
Mean bulk cluster intensity is 0.59, with a median of 
0.44.  

LWC coherence lengths, χ(l), considering the aver-
age Twin Otter flight speed of about 70 m s–1, ranged 
from about 0.07 km to 38.6 km in length, with mean and 
median lengths of 6.21 km and 3.20 km, respectively 
(Table 1). Forty-two percent of the flight segments had 
cluster lengths of 2 km or less in length.   

The primary purpose of our work was to determine 
the magnitude of cloud LWC spatial variation for remote 
sensing systems. An icing remote sensing system would 
need to provide pilots with sufficient time to react if haz-
ardous icing is detected. We chose 20-km and 40-km 
ranges, computing the LWC א and χ(l) parameters for 



overlapping, non-independent 20- and 40-km sub-
segments incremented at 2-km intervals from the begin-
ning of each flight segment to the end. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Flight segment 970124f2c 20-km and 40-km 
coherence length, χ(l), cluster intensity, א, and 1-sec 
LWC. CL = coherence length; CIP = cluster intensity 
parameter. 

 
Figures 1a and 1b show cluster length, χ(l), and 

cluster intensity, א, respectively, plotted for the 20-km 
and 40-km distances for flight segment 970124f2c. Co-
herence lengths behave as expected, becoming longer 
or shorter when the 1-sec LWC visually suggests clus-
ters should be longer or shorter. Cluster intensities may 
at first appear counterintuitive, but recall that each plot-
ted א corresponds to a 20-km or 40-km sub-segment 
length of the entire flight segment. For example, when 
the 1-sec LWC measurements appear to be highly clus-
tered at 60 km into the flight, the 20-km sub-segment 
cluster intensity indicates that clustering is low. And, at 
about 75 km into the flight, the 1-sec LWC measure-
ments suggest that clustering is low when the 20-km 
sub-segments indicate that cluster intensity is high. This 
response is a result of the last term in equation 3, which 
indicates that as the mean decreases relative to the 
variance, cluster intensity increases. And, as the mean 
increases relative to variance, cluster intensity de-
creases. In Figure 1b, areas with smaller means but 
with relatively large variances tend to have larger 20-km 
sub-segment cluster intensities, whereas areas with 
high variance, but also with a high mean LWC, show a 
lower 20-km sub-segment cluster intensity. 
 
6. DISCUSSION 

 
Jameson and Kostinski (2000) performed their 

analyses on simulated icing cloud LWC. Our analyses 
indicate that clustering of actual cloud LWC varies over 
a wide range of cluster intensities and coherence 
lengths. Our largest bulk cluster intensity, 2.16, barely 
exceeds the largest value, 2.0, illustrated in Jameson 

and Kostinski’s (2000) Figure 4, though they do not pro-
vide an expected range for natural conditions. Our 
smallest bulk cluster intensity, 0.06, suggests that flight 
segment 980204f1a is nearly Poissonian, and thus has 
no LWC clustering (Table 1).  

We found cluster intensity to vary over a wide range 
between flights, but found conditions to be quite similar 
among multiple segments selected from the same flight. 
For example, segments a, b, and c from flight 970124f2 
have similar cluster intensities ranging from 0.24 to 
0.66, and cluster lengths ranging from 4.0 to 6.7 km 
(Table 1). Segments a and b of flight 980224f1 have 
nearly identical cluster intensities of 0.84 and 0.86, re-
spectively. Segments a and b of flight 970115f2 have 
identical, and very low, cluster lengths of 0.07 km, so 
low that these flight segments are essentially not clus-
tered, but Poissonian. This consistency suggests that 
atmospheric dynamics controlling clustering persisted 
for a considerable time and distance in these flights. It 
also suggests that, if this is the case, the Jameson and 
Kostinski algorithms are quite consistent in their ability 
to represent LWC clustering conditions. 

Of multiple segments taken from a single flight, only 
the two flight 971209f1 segments deviated significantly 
from one another in cluster intensity and cluster size. 
Variation of א and χ(l) through flight segments along the 
20-km and 40-km sub-segments are very responsive to 
changes in LWC mean and variance, and provide an 
indication of the amount of variation a remote sensing 
system might encounter. 

Cluster climatologies could be used to assess air-
craft icing conditions and the potential performance of 
icing remote sensing systems synoptically, regionally, 
and seasonally. To mimic the clustering of LWC ob-
served we have developed a model to generate Corre-
lated Data Series (CDS) of LWC (Koenig et al., 2002). 
 
7. CONCLUSIONS 

 
Clustering intensities and correlation lengths devel-

oped from Jameson and Kostinski’s (2000) methodology 
do provide a consistent method of analytically assessing 
clustering. Also, the incremented 20-km and 40-km sub-
segments of cluster intensity and correlation length 
through flight segments provide information about the 
apparent fluctuation of conditions that might be experi-
enced by a remote sensing system scanning ahead of 
an aircraft. The usefulness of Jameson and Kostinski’s 
techniques lies in the ability to quantitatively character-
ize clustering, summarize it, and create new, but repre-
sentative, cloud series that will be useful for assessing 
remote sensor and aircraft performance. 

In addition to the LWC examples presented here, 
we will examine other parameters such as temperature, 
particle concentration, particle size spectra, and glacia-
tion. We also believe it would be useful to assess the 
size of individual clusters within the average cluster 
size, χ(l), for flight segments because aircraft experience 
actual clusters in flight. To demonstrate the importance 
of clustering to the aircraft icing process, we are assess-
ing the effects of clustered versus Poissonian cloud 
LWC in a NASA icing research tunnel. 
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Our analyses suggest that most actual icing clouds 
are typically “patchy” and are rarely Poissonian. Cluster-
ing of cloud microphysical properties affects icing proc-
esses and, potentially, the ability and reliability of re-
mote sensing systems to identify icing conditions. 

Clustering quantification, and perhaps creation of 
representative data series from climatological summa-
ries of clustering, will allow more accurate modeling of 
icing and remote sensing system performance. 
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