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1.  Introduction 
 
Ice water content in natural clouds is an important 
but difficult to measure quantity.  The goal of the 
Mitchell et al. 1990 study was to find average 
relationships between the mass of particles and 
their length that can be used to determine cloud 
ice water contents from in-situ data such as is 
routinely recorded with two-dimensional imaging 
probes. Crystal maximum dimension and mass 
were measured. Linear regression analysis was 
performed on the logarithms of the data to 
estimate an average mass-size relationship of the 
form M=αLβ. Relationships were determined for 
subsets of the data set based on crystal habit as 
well as for the full data set.  
 
Our purpose with this study is to explore and 
reduce the errors involved in this procedure.  The 
errors we are concerned with are of two basic 
types.  One is simply the differences between the 
actual particle masses and their estimated masses 
using the mass-size relationship.  This we call 
error type I and represent it with the RMS 
differences and the correlation coefficient.  The 
other is the robustness of the mass-size 
relationships or how accurately did we find β from 
the limited data set?  This we call error type II and 
explore it with a bootstrap style analysis.  Type I 
error influences how many particles must be 
averaged together to obtain an acceptable 
estimate of ice water content assuming the 
relationship is correct on average.  The later deals 
with whether the mass size relationship is correct 
on average when extended to other data.  
 
 
2. Reduction of error type I 
 
The error type I, the differences between actual 
and estimated masses, can be reduced by basing 
the estimates on more and/or different size 
parameters than length alone.  For example from 
two-dimensional images, in addition to length (L), 
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the area (A), perimeter (P), and width (W) can also 
be derived.  The same images as used in Mitchell 
et al. 1990 are used in this study.  At the time of 
this writing we have analyzed 128 of those images 
for A, P, L and W.  The Fourier spectrum (Hs) of 
the centroid to perimeter distance as a function of 
position along the perimeter was also calculated 
for each particle.  There were 630 particles 
analyzed in the Mitchell et al. 1990 study 1986-7 
field season.  Thus our current results can be 
considered preliminary in that we expect them to 
be strengthened after analysis of the full data set. 
 
Figure 1 shows scatter plots of estimated mass 
versus actual mass for three cases.  Two cases 
were calculated by using a least squares fit to the 
128 data points to establish a relationship of the 
form M = αXβ.  In one case X is the particle length 
(L) as in Mitchell et al. 1990.  In the other case X = 
A x W x [2 x (L + W)/P].  The later yields better 
estimates as can be seen from the RMS 
differences and correlation coefficients that are 
shown on the plots.  The second relationship was 
chosen with the following reasoning.  A represents 
the solid part of the particle on the 2D image, W 
represents its extension out of the 2D plane and [2 
x (L + W)/P] reflects its decreased average density 
when its perimeter is convoluted.  In Mitchell et al. 
1990 the shapes of the particles are taken account 
of by classifying each particle as a certain type 
and then using a mass-size relationship 
determined for that type.   Here the particle shape 
information is attempted to be included in the 
single parameter X = A x W x [2 x (L + W)/P].  
Fitting subsets of the data separately should 
improve predictions, at least for that data set.  
Indeed the result of using the habit conditioned 
relationships derived in Mitchell et al. 1990, shown 
also in figure 1, are somewhat improved over 
those derived here using X = L but not as good as 
using the single X = A x W x [2 x (L + W)/P] 
parameter.  Thus the new parameter is a much 
better predictor of mass than length alone or even 
length alone but with a different relationship for 
each crystal shape category. 



 

Figure 1 (left):  Estimated versus actual 
masses (in mg) for three cases. Top: the fit is 
to X = L, the length.  Middle: the fit is to X = A 
x W x [2 x (L + W)/P]. Bottom: masses are 
estimated with Mitchell et al. 1990 habit 
conditioned mass-size relationships. The 
correlation coefficient (r) between the masses 
and estimated masses and rms differences 
are shown on the plots. 
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We also used a neural network to estimate 
masses from the available parameters with very 
similar results.  In figure 2 we again show the 
results of estimating the mass from length alone 
and from X = A x W x [2 x (L + W)/P] alone to 
emphasize the improvement by changing 
parameters without increasing the number of 
parameters.  Adding parameters should improve 
estimates for the same small data set that the 
relationship was based on.  However it may not 
improve estimates on other data sets.  In this case 
even the improvement on the same data set has 
been minimal.  For example when applied to A, W, 
and [2 x (L + W)/P] together but with each an 
independent parameter, neither multiple linear 
regression nor the neural network resulted in 
significant improvement over using the single 
parameter X = A x W x [2 x (L + W)/P].  Using 
simply all the parameters L, W, A, P, and Hs with 
the neural network yielded poorer results.  This 
suggests that applying some human intelligence 
prior to applying artificial intelligence pays off.  The 
result that X = A x W x [2 x (L + W)/P] is as good 
as any combination of multiple parameters may 
change when the full data set is used and by 
applying more advanced neural networks 
 
 
3. Error type II 
 
Error type II involves the uncertainty in β estimated 
from a finite data set.  We explore this using a 
bootstrap style analysis.  For the two cases shown 
in figure 1, the 128 data points were randomly 
divided into two groups and the regression 
performed on each group separately. This was 
done 1000 times. The standard deviation of the 
resulting distribution of 2000 βs provides an 
estimate of the uncertainty in β.  For the 
regressions on X = A x W x [2 x (L + W)/P] the 
standard deviation of βs is 0.03 whereas it is 0.12 
for the regressions on X = L.  Therefore it seems 
that the improved parameter reduces type II error 
as well as type I error. 
 



 

 
 

 
Figure 2:  Estimated by a neural network versus actual masses (in mg) for the case where the 
estimate is based on particle length (L) left, and where it is based on A x W x [2 x (L + W)/P] 
right. The correlation coefficient (r) and rms differences are shown on the plots. 
 
 
 

 
 
 

habit N α β ∆β 
side planes 77 0.0206 2.30 0.09 
long columns 64 0.0124 1.85 0.27 
radiating assemblages of plates 63 0.0186 2.09 0.12 
combinations of long columns 62 0.0167 1.82 0.15 
rimed combinations of long columns 54 0.0252 1.94 0.10 
aggregates of fragments of heavily rimed dendrites 46 0.0341 1.96 0.16 
fragments of heavily rimed dendrites 39 0.0269 1.72 0.29 
aggregates of side planes 35 0.0212 2.17 0.20 
aggregates of side planes, bullets, and columns 31 0.0221 2.14 0.18 
aggregates of radiating assemblages of plates 30 0.0227 1.81 0.16 
plates 30 0.0279 2.49 0.34 
rimed long columns 27 0.0233 1.82 0.25 
all 630 0.0210 2.00 0.04 
  

 
Table 1:  Results of bootstrap style analysis of habit conditioned mass-size relationships. 
N is the number of data points for that crystal type.  

 
 



The same bootstrap style analysis was also 
performed on the original Mitchell et al. 1990 data 
set (X = L), for all habits for which the number of 
particles (N) was greater than 26, to determine 
whether the habit-conditioned relationships are 
robust enough to warrant their use over the single 
all category relationship.  The results are shown in 
table 1 where it can be seen that for most of the 
habit conditioned relationships, the uncertainty (∆β 
represented by standard deviation of the βs) in β is 
larger than the difference from the all category β.  
Thus use of the habit-conditioned relationships is 
not indicated, especially in light of other 
uncertainties. Uncertainties are increased by the 
fact that data sets to which the relationships are 
likely to be applied may be different than the data 
sets on which the regressions were performed.  
This is because they come from different storms, 
different imaging systems, and are classified into 
habits by different algorithms or individuals.  So 
the correct average relationship for the data set on 
which the relationships are applied may differ from 
the relationship derived in Mitchell et al. 1990.   
 
In addition to better parameters, increasing N can 
reduce type II error.  This can be seen in table 1 
where the uncertainty in β for the all case, which 
has N = 630, is much less than for the habit 
conditioned cases, even though as expected the 
RMS error is greater. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4. Conclusions and future work 
 
The work we have done suggests that in the case 
of the Mitchell et al. 1990 data set, the habit-
conditioned relationships are not robust enough to 
warrant their use. Instead their relationship based 
on all crystal types should be used when 
estimating particle mass from length alone.  Using 
a new parameter, A x W x [2 x (L + W)/P], takes 
into account the shape factor more effectively than 
habit classification and reduces both type I and 
type II errors.  Type II error will also be reduced by 
collecting more mass and image data, i.e. by 
increasing N.  Our immediate future work will be to 
complete the processing and more thorough 
analysis of the full Mitchell data set.  This will 
result in an improved ability to estimate ice water 
content from in-situ image data.  Collecting more 
mass and image data must be a priority project to 
further improve ice water content estimates from 
in-situ image data.   
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