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1.   INTRODUCTION

Using cloud radar observations of cirrus cloud
properties obtained at the ARM (Atmospheric Radiation
Measurement program) SGP (Southern Great Plains)
site and results from a CRM (cloud-resolving model)
simulation, we are evaluating the cirrus properties
simulated by a SCM (single-column model). The SCM is
based on the NCEP (National Centers for Environmental
Prediction) MRF (Medium Range Forecast) model,
which includes cloud water/ice as a prognostic variable.
We used SCM and CRM simulations based on intensive
observations made at the ARM SGP site for 29 days
from 19 June to 17 July 1997. During this period, cirrus
clouds, many generated by deep convection, were
observed about 30 percent of the time by the cloud
radar.

To produce cirrus statistics from the SCM results
that are comparable to the cloud radar observations, we
used a method described by Klein and Jakob (1999) that
uses the SCM cloud fraction profile and the SCM’s
overlap assumption (random or maximum/random) to
create a synthetic cloud field. The SCM’s cloud water/ice
is assumed to be uniformly distributed in the clouds at
each level. We then sampled the synthetic cloud fields
like a cloud radar would to determine the statistical
properties of "cirrus" and "thin cirrus", as defined by
Mace et al. (2001). We compared the SCM’s cirrus cloud
properties to those obtained by Mace et al. using the
ARM cloud radar and the corresponding CRM
simulation.

2.   SCM SIMULATION

2.1 NCEP MRF SINGLE-COLUMN MODEL

The single-column model (SCM) used is based on
the National Centers for Environmental Prediction
(NCEP) Medium Range Forecast (MRF) model. Recent

description about the NCEP MRF model can be found
from Kalnay et al. (1998).

The stratiform cloud condensate mixing ratio, which
can be either liquid water or ice depending on local
temperature and cloud top temperature, is predicted
explicitly in the SCM. In the model, the processes
effecting the cloud condensate include three dimensional
advection, grid-scale condensation (Zhao and Carr
1997), convective detrainment at cloud top (Pan and Wu
1995), conversion of cloud condensate to precipitation
(Zhao and Carr 1997 for ice, and Sundqvist et al. 1989
for liquid water), evaporation of cloud condensate (Zhao
and Carr 1997), and horizontal and vertical diffusion.

For radiation calculation, the fractional area of the
grid point covered by the cloud, i.e. cloud fraction, is
diagnosed from the predicted cloud condensate mixing
ratio and relative humidity following Xu and Randall
(1996). The effect of convection on cloud fraction is
included through the detrainment of cloud condensate by
convective mass flux. The fractional cloud cover is
allowed at all model levels and clouds are assumed to be
randomly overlapped for radiation calculation.

In the SCM, the shortwave radiation includes
absorption/scattering by water vapor, ozone, carbon
dioxide, and clouds based on the work of Slingo (1989),
Chou et al. (1998) and Kiehl (1998). The infrared
radiation follows Kiehl et al. (1998) and Stephens (1984).
The cloud radiation heating rate is calculated using the
predicted cloud condensate. Clouds on different model
levels are randomly overlapped.

Penetrative convection in the SCM is simulated
following Pan and Wu (1995), which is based on
Arakawa-Schubert (1974) as simplified by Grell (1993)
and with a saturated downdraft. The key variable is cloud
work function, which is determined by the temperature
and moisture in each air column of the model gridpoint.
Convection occurs when the cloud work function
exceeds a threshold. Mass flux of the cloud is
determined using a quasi-equilibrium assumption based
on this threshold cloud work function. The temperature
and moisture profiles are adjusted towards the
equilibrium cloud work function within a specified time
scale using the deduced mass flux. This scheme allows
the transportation of momentum, as well as heat and
moisture, by the mass fluxes induced in the updraft and
the downdraft. Only the deepest cloud is considered as a
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major simplification to the original Arakawa-Schubert
scheme in which a spectrum of clouds are considered. A
level between the highest possible cloud top, which is
determined by the parcel method, and the level where
environmental moist static energy is minimum is
selected randomly as the cloud top.

2.2 SCM SIMULATION DESCRIPTION

The MRF SCM was run for 29 days (from June 18
23:30 UTC to July 17 23:30 UTC 1997). The large-scale
data set of the ARM summer 1997 SCM IOP at the SGP
cloud and radiation testbed (CART) site produced by the
variational analysis method (Zhang et al. 2001) was
used to drive the model.

The model was set to have 28 unequally-spaced
sigma levels with about 20 levels in the troposphere. The
predicted variables were updated every half an hour and
radiation parameterization was calculated every
timestep. The advection of cloud condensate was not
included due to lack of observation.

The SCM predicts too warm atmosphere at all
levels. The mean errors of temperature are large at
upper and low troposphere (4 K and 2 K respectively)
and small in the middle layer, i.e. 600 to 400 mb. The
root-mean-square (RMS) error of temperature is about 5
K, comparable to the CRM’s results (Xu and Randall
2000). It predicts too moist atmosphere in middle to
upper levels. The RMS error of relative humidity is about
30% and the bias about 25%. To compare, the CRM
over-predicted relative humidity at middle to upper levels,
too, but with lower RMS error (20%) and bias (10%).

3.   OBSERVATIONS

The macrophysical properties of cirrus observed by
the MMCR and microphysical properties of "thin cirrus"
retrieved by Mace et al (2001; MCA hereafter) for the
summer 1997 (June, July, and August) were used in our
analysis. We describe the retrievals shortly here. Similar
descriptions can be found in Mace et al. (2001) and Luo
et al. (2002).

According to MCA, to qualify as a cirrus cloud layer,

the temperature at cloud top must be less than -35oC
and the temperature at the level of maximum ice water

content (IWC) must be less than -20oC. This definition
ensures that ice microphysical processes are dominant
in the generation region near cloud top, but excludes
deep cloud layers that are capped by ice-phase clouds.
MCA used a version of this definition based on radar
reflectivity. They required the radar echo top to occur at a

temperature less than -35oC and the level of maximum

dB to occur at a temperature less than -20oC. At

cirrus cloud levels, the minimum detectable reflectivity of
the SGP cloud radar is -40 to -35 dB . The temporal

and vertical resolution of the cloud radar is 30 s and 90
m, respectively.

MCA retrieved the ice water path (IWP), layer mean
effective radius (re), and the layer mean ice particle
concentration (n) using the method described by Mace et
al. (1998). The method assumes that the cirrus ice
particle size distribution can be described by a first-order
modified Gamma distribution. The particular size
distribution is determined by requiring that its sixth
moment match the observed radar reflectivity factor, and
that its radiative properties, as parameterized by Fu and
Liou (1993), match the radiance measured by the
atmospheric emitted radiance interferometer (AERI) at
wavelength between 10.2 to 12.5 microns. This retrieval
algorithm requires that the cirrus layer be optically thin,
with a layer emittance less than 0.85. It is also necessary
that no lower clouds obscure the cirrus layer from the
AERI. The temporal resolution of the retrieved properties
is determined by the AERI: 3-minute averages are
generated every 8 minutes, so these numbers represent
the individual retrievals which are 3 minute averaged
layer means.

4. CRM SIMULATION

The cloud resolving model used in this study is the
2-D UCLA/CSU (University of California at Los Angeles/
Colorado State University) CRM. The details of the CRM
have been described by Krueger (1988), Xu and Krueger
(1991), and Xu and Randall (1995). The dynamics of the
CRM is based on the anelastic system. The physical
parameterizations in the model consist of a third-moment
turbulence closure, a bulk three-phase microphysics,
and an interactive solar and IR radiative transfer scheme.

The description of the bulk microphysics of the CRM
can be found in Fu et al. (1995), Krueger et al. (1995),
Lord et al. (1984), Lin et al. (1983), and Hsie et al.
(1980). The bulk microphysics includes five species:
cloud water, cloud ice, snow, graupel, and rain. In the
CRM, cirrus clouds contain small ice crystals ("cloud
ice") and large ice crystals ("snow").

The same data set used to driven the SCM were
used to drive the CRM (Xu and Randall 2000). The
simulated cirrus properties were compared with MCA’s
results (Luo et al. 2002). The excellent qualitative
agreement between the CRM simulation and the
observed cirrus statistics is evident. These are proofs
that the essential physics of cirrus formation,
maintenance, and decay are exhibited in the CRM
simulation.

5. ANALYSIS OF SCM RESULTS

The SCM predicts cloud condensate (liquid water or
ice) which represents a grid mean value, i.e. on the scale
of hundred kilometers. The cirrus properties from cloud
radar observations and the retrievals represent values
on kilometer scale. The SCM results can not be
compared directly to the cloud radar observations and
retrievals because of this scale discrepancy. We need to
distribute the SCM results into subcolumns for such
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comparison. In our study, two extreme situations are
analyzed. As one extreme situation, the effects of snow
and rain are neglected completely, i.e. the SCM cirrus
clouds consist of cloud ice only and, only cloud ice or
cloud liquid water is considered to calculate the
reflectivity. This situation is called NOSNOW situation. In
the other situation, the SCM cirrus clouds consist of both
cloud ice and snow. In addition to cloud ice and cloud
water, snow and rain are included for reflectivity
calculation. Snow and rain are assumed to distribute
uniformly in snowy and rainy areas, which are
determined based on the microphysics in the SCM. This
is called SNOW situation.

5.1 NOSNOW ANALYSIS

The SCM predicted cloud condensate at all model
levels was subdivided into 100 subcolumns using an
overlap assumption basically following the method
described by Klein and Jakob (1999). Thus a cloud
configuration was generated each time. Different overlap
assumptions generate different cloud configurations.
Maximum/random and random overlap assumptions are
two assumptions most commonly used in current large-
scale models. The random overlap assumptions is used
in the SCM, which means the positions of cloudy cells at
each level is determined randomly. The maximal/random
overlap means that when clouds occur in adjacent
layers, they are maximally overlapped but the excess
portion is positioned at random across the layer. In
addition, if a clear layer separates two cloudy layers, they
are assumed to be randomly overlapped. In our analysis
both maximum/random and random overlap
assumptions were used for NOSNOW analysis. Figure 1
gives an example of the cloud configurations generated
by using these two assumptions. This method was
applied to the SCM simulated profiles of cloud
condensate and cloud fraction every hour over the entire
simulation period. Neglecting horizontal inhomogeneity,

the “local” cloud condensate mixing ratio is , where

is the grid mean cloud condensate mixing ratio and

 is cloud fraction.
For each subcolumn, the reflectivity is calculated

from cloud ice or cloud liquid water content using the
following equation suggested by S. Matrosov (personal
communication):

(1)

where is reflectivity factor in mm6 m-3, is a

coefficient (49.6x10-6 for liquid, 9.4x10-6 for ice), is

liquid or ice water content in g m-3, and is an effective

radius of the cloud particles in micrometers (Beesley et
al. 2000). In the SCM, depends on temperature. For

cloud ice, equals 20 m at temperatures lower than

223.26 K, and increases to 80 m at 263.26 K. For

cloud water, is 5 m at temperatures warmer than

273.16 K, and increases to 10 m at 253.16 K. The

same method to determine  is used in our analysis.

The IR emissivity of a cirrus layer is computed for
each subcolumn from the mixing ratios and effective

sizes of cloud ice. The cloud layer IR emittance at a
particular wavelength is defined as

, (2)

where

, (3)
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Figure 1. An example of cloud distribution obtained by combin-
ing the SCM simulated cloud fraction with an overlap
assumption. Top panel: maximal/random overlap assump-
tion; bottom panel: random overlap assumption.
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is the infrared absorption coefficient, z1 is the cloud base

height, z2 is the cloud top height, is the single-

scattering albedo, and is the extinction coefficient. As

parameterized by Fu and Liou (1993), and can be
obtained in terms of the mean effective size and ice
water content:

(4)

, (5)

where and are wavelength-dependent

coefficients, and is the mean effective size of ice

crystals. Fu and Liou gave the coefficients for 18 spectral
bands with central wavelengths ranging from 0.55 to
70.0 micrometers. In order to match the radiance used
by MCA (wavelength between 10.2 to 12.5 microns),
those coefficients for the spectral band with 11.3 microns
central wavelength are used in our calculation.

We then sampled cirrus and "thin cirrus" at the 100
subcolumns, neglecting the effects of snow and rain,
using nearly the same definition of cirrus and "thin cirrus"
as MCA, and analyze their properties.

5.2 SNOW ANALYSIS

The cloud radar saw all hydrometers, so that snow
should be included as part of cirrus and the effects of
snow and rain on reflectivity should be considered.
However, the SCM does not predict snow mixing ratio
and rain mixing ratio. It predicts snow flux and rain flux at
each level, instead. Based on the microphysics in the
SCM, we diagnosed mixing ratios of snow and rain from
their fluxes.

In the SCM, it is assumed that net snow generation
in one level is assumed to be balanced by snow net
falling out in one time-step, i.e. the equation

(6)

holds, where is the net snow generation by

microphysical processes, is snow falling speed, and

is the "local" snow mixing ratio, is the grid

mean snow flux ( ). By assuming that snow distributes

uniformly in snowy area, we get

, (7)

where is the grid mean snow mixing ratio, is the

snow fraction, i.e. the area covered by snow in the SCM
grid. The snow falling speed is a function of its local
mixing ratio. The formula for snow falling speed used by
the University of Utah Cloud Resolving Model (UU CRM)
is used here and its derivation can be found in Lin et al.
(1983) and Luo et al. (2002):

. (8)

Combining equations (7) and (8), we get

. (9)

Equation (9) means the grid mean snow mixing ratio can
be diagnosed from grid mean snow flux and snow
fraction, so that the snow fraction needs to be

determined first. In the SCM, source terms for snow
include a) snow falling from above, b) autoconversion of
cloud ice to snow, and c) accretion of cloud ice by snow.
Based on this, we can determine a sub-grid cell is snowy
or not based the cloud distribution at that level and the
distribution of snow above as indicated by figure 2:
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Figure 2. The flow chart of the method to determine whether a
subgrid cell is snowy or not.
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Thus a snow distribution can be determined and at the
same time we get the snow fraction which is the number
of snowy cells divided by the total number of cells.

In the SCM, rain at a level comes from rain falling
from above, conversion from cloud liquid water, and
snow melting. We determine each cell is rainy or not
using similar method as figure 2. We then get rain mixing
ratio by relating it to rain falling speed and neglecting the
horizontal inhomogeneity of rain distribution. Again the
falling speed for rain used in the UU CRM is used in our
calculation.

The reflectivity of snow is computed as cloud ice
with equals 75 m. For rain, the following equation is

used:

, (10)

where  is rain content in g m-3.
We sampled cirrus and "thin cirrus" at the 100

subcolumns each hour, including the effects of snow and
rain, using nearly the same definition of cirrus and "thin
cirrus" as MCA, and analyze their properties.

6. RESULTS

When neglecting snow and rain (NOSNOW
analysis), 25,620 cirrus samples and 13,058 "thin cirrus"
samples were found. The numbers decrease to 11,930
and 7,417 for SNOW analysis. The cloud occurrence
frequency (COF), location, thickness, and mid-cloud
temperature, for both cirrus and "thin cirrus" clouds were
analyzed statistically and compared to the MMCR
observations and the CRM simulation. In addition, for
"thin cirrus" clouds, the ice water content (IWC), ice
water path (IWP), effective radius ( ), IR emittance,

and visible optical depth were also evaluated statistically.

6.1 CIRRUS CLOUD OCCURRENCE FREQENCY

The SCM cirrus and "thin cirrus" cloud occurrence
frequency (COF) was calculated as the fraction of
subcolumns where cirrus and "thin cirrus", respectively,
occurred in the model. For the cloud radar observations,
the cirrus and "thin cirrus" COF was the fraction of time
when cirrus cloud and "thin cirrus" cloud was observed,
respectively. For one column of CRM, the cirrus COF
was calculated the same as for the radar observations.
The cirrus COFs at 16 evenly-distanced columns in the
CRM was averaged to get the domain-mean (i.e. large-
scale) value. The GOES high cloud amount during the
IOP is also used for comparison.

Over the entire simulation period SCM NOSNOW
cirrus clouds had a mean COF of 25% and 37% when
maximum/random and random overlap assumptions

were used, respectively, SNOW cirrus clouds (random
overlap only) occur 17% of time. Compared to the
observations (cloud radar 30% and GOES 27%), the
SCM SNOW analysis and NOSNOW with maximum/
random overlap assumption analysis underestimated the
occurrence of cirrus, while NOSNOW with random
overlap assumption analysis overestimated it.

The 3-hourly COFs for the SCM, radar
observations, and the CRM domain-mean values were
calculated and compared to the GOES observed 3-
hourly high cloud amount (Minnis et al. 1995) during the
simulation period. Table 1 gives their mean COFs, the
correlation coefficients and normalized standard
deviations with respect to the GOES high cloud amount.
Both the entire simulation period and selected
subperiods, during which clouds were formed mainly
locally and which covers about half of the entire
simulation period, are considered. For the entire
simulation period, the correlation coefficients for SCM
NOSNOW cirrus are 0.44 and 0.47 using maximum/
random and random overlap assumption, respectively,
the SCM SNOW (random) 0.09, while that for cloud
radar observed cirrus is 0.63 and the CRM cirrus 0.30.
When only the selected subperiods were considered, the
two correlation coefficients for SCM NOSNOW cirrus
increased from 0.44 to 0.54 (maximum/random) and
0.47 to 0.68 (random) respectively, SCM SNOW
(random) from 0.09 to 0.22, the CRM from 0.30 to 0.70,
while the cloud radar observations did not show such a
change. Since the SCM and the CRM consist of very
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Table 1. Values without brackets or parentheses are cirrus
occurrence frequency from the MRF SCM simulation, the
CRM simulation, radar observations (Mace et al. 2001), and
GOES observation at ARM SGP CART site. Values in
brackets are correlation coefficients and values in parenthe-
ses are normalized standard deviation, with respect to
GOES high cloud amount.

Period
Entire IOP Subperiods

A, B, C

SCM max/rand
(cloud ice)

0.25 [0.44]
(1.02)

0.25 [0.54]
(1.01)

SCM rand
(cloud ice)

0.37 [0.47]
(1.29)

0.33 [0.68]
(1.20)

SCM rand
(cloud ice &

snow)

0.17 [0.09]
(0.94)

0.17 [0.22]
(0.89)

CRM
0.37 [0.30]

(1.25)
0.30 [0.70]

(1.01)

MMCR 0.30 [0.63]
(1.52)

0.37 [0.63]
(1.48)

GOES
0.27 [1.00]

(1.00)
0.34 [1.00]

(1.00)



different physics, the increase of COF found in both
models indicate the detrimental effects of lack of
hydrometer advection into or out of the model’s domain
on the simulated cirrus occurrence. When random
overlap assumption was used, the SCM NOSNOW cirrus
COF correlated a little bit better with the GOES high
cloud amount (and with radar observed cirrus COF) than
with NOSNOW maximum/random cirrus, and much
better than SNOW (random) cirrus. The poor correlations
between SNOW random cirrus and the observations
(0.09 for the entire IOP and 0.22 for the selected
subperiods), compared with those between NOSNOW
random and observations (0.47 and 0.68), is due to the
over-estimation of the SCM snow fraction which
excluded many subcolumns as cirrus.

6.2 CIRRUS MACRO-SCALE STATISTICS

The frequency distributions of cirrus cloud top
heights, cloud base heights, cloud thickness, and mid-
cloud temperature are shown by figure 3. In the figure,
the solid lines represent radar observations, dotted lines
represent CRM results, dash-dotted lines represent the
SCM SNOW random results, and thin solid lines are for
the SCM NOSNOW random results. (SCM NOSNOW
maximum/random results are not shown in figure 3 since
they are very similar to NOSNOW random results.) Table
2 gives the statistics of these macro-physical properties.

In the NOSNOW analysis, regardless of the overlap
assumption used, the depth of the thinnest SCM cirrus
and "thin cirrus" clouds is about 1.1 km determined by
the vertical resolution of the SCM at the cirrus levels.

Both the SCM cirrus and "thin cirrus" clouds have modes
at the possible thinnest depth. About 75% (random) and
50% (maximum/random) of the NOSNOW cirrus and
“thin cirrus” clouds are thinner than 2 km, i.e. they occur
at a single model level. The cirrus cloud base heights are
too high compared to observations and CRM simulation
because snow is not considered.

When random overlap assumption was used, the
SCM NOSNOW cirrus and "thin cirrus" clouds had
higher cloud base heights and mid-cloud heights, and
they were physically thinner and had lower mid-cloud
temperature, compared to the SCM NOSNOW cirrus and
"thin cirrus" clouds when maximum/random overlap
assumption was used (table 2). These results are due to
the tendency that maximum/random overlap assumption
generates thicker cloud, when there are clouds existing
at contiguous levels, than random overlap assumption.

SNOW analysis gives too low cirrus cloud base
height and too large cloud thickness due to snow
extending too low.

Table 2: Cirrus macro-scale statistics derived from the MRF
SCM simulation and CRM simulation over summer 1997 SCM
IOP period and from Mace et al. (2001) summer 1997 (June,
July, August) data at the SGP ARM site. The values outside of
brackets or parentheses are mean quantities, values in paren-
theses denote standard deviations of the mean quantities and
values in brackets denote means derived from the optically thin
single layer subset of cloud events. *: The cirrus cloud fre-
quency is obtained using data during the SCM Summer IOP
period.

SCM
max/
rand

(cloud
ice)

SCM
rand

(cloud
ice)

SCM
rand

(cloud
ice &
snow)

CRM MCA

Freq.
(%)

25
[15]

37
[19]

17
[11]

37
[19]

30*
[16*]

Base
Height
(km)

10.3
(1.7)
[10.4]

11.1
(1.9)
[11.0]

8.7
(2.7)
[8.5]

8.8
(2.0)
[8.9]

10.3
(1.8)
[10.8]

Top Height
(km)

13.0
(1.9)
[12.9]

12.9
(1.8)
[12.8]

12.9
(1.9)
[12.9]

12.0
(1.3)
[11.7]

12.1
(1.4)
[12.4]

Mid-Cloud
Height
(km)

11.7
(1.6)
[11.6]

12.0
(1.8)
[11.9]

10.8
(2.0)
[10.7]

10.5
(1.3)
[10.3]

11.2
(1.5)
[11.6]

Thickness
(km)

2.7
(1.7)
[2.4]

1.8
(0.8)
[1.8]

4.2
(2.5)
[4.4]

3.4
(2.0)
[2.8]

2.0
(1.5)
[1.5]

Mid-Cloud
Tempera-
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(K)

230
(8.1)
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Figure 3. Frequency distributions of “all cirrus” (a) cloud thick-
ness, (b) mid-cloud height, (c) mid-cloud temperature, (d)
cloud top height, and (e) cloud base height. Solid line: radar
retrievals; dotted line: CRM results; dash-dotted line: SCM SNOW
random results; thin solid line: SCM NOSNOW random results.



6.3 "THIN CIRRUS" MICRO-SCALE STATISTICS

6.3.1 FREQUENCY DISTRIBUTIONS

The frequency distributions of microphysical
properties (IWP, IWC, and ) for "thin cirrus" clouds are

given by figure 4. For the SCM, only the results with
random overlap assumption are shown.

Figure 4 shows that for "thin cirrus" clouds, no
matter snow is considered or not, the SCM IWP and IWC
distributions are too large except at low values of IWP or
IWC, respectively, i.e. cirrus with large IWP or IWC occur
too often relative to cirrus with low IWP. Their mean,
mode, and median values are too large compared to the
retrievals and CRM results. The distribution of the layer-
mean effective radius ( ) covers too narrow a range

with no values larger than 75 . Based on these
results, it is not surprising that the SCM "thin cirrus" had
too large IR emittance and visible optical depth (not
shown).

The distributions of the SCM NOSNOW "thin cirrus"
IWC, IWP and did not change much with the overlap

assumption used. Random overlap assumption
generates results which are a little bit closer to those of
the retrievals: relatively a little bit more samples with
smaller IWC, IWP, IR emittance, and visible optical
depth.

6.3.2 DEPENDENCE ON TEMPERATURE

The layer-mean IWC and IWP of the SCM "thin
cirrus" clouds were divided into 8 different temperature
bins using a 5 K bin size. The mean values of the IWC
and IWP in each temperature bin and their 90 percent
confidence intervals were calculated and compared to
the retrievals and CRM simulation (figure 5). As show by
figure 5, the SCM "thin cirrus" clouds contain too large
IWC and IWP, except for the coldest temperature bin
(207.5 - 212.5 K), i.e. their IWP and IWC increase too
rapidly with temperature. The CRM “thin cirrus” IWP is
very close to the retrievals, but its IWC is too low due to
too large cloud layer thickness. Again, NOSNOW with
maximum/random overlap assumption results (not
shown) are very close to NOSNOW with random overlap
assumption.

6.3.3 DEPENDENCE ON CLOUD DEPTH

The layer-mean IWCs and IWP of the retrieved

warm ( > 230 K), neutral (220 K < < 230 K), and

cold ( < 220 K) "thin cirrus" clouds were segregated by
the cloud physical depth into 3 classes: 0 - 1km, 1 -2 km,
2 - 4 km. Similarly, for the SCM warm, neutral, and cold
"thin cirrus" clouds respectively, the layer-mean IWCs
were divided into 3 different classes by the cloud
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Figure 4. Frequency distributions of “thin cirrus” (a) ice water path, (b)
layer-mean ice water content, and (c) layer-mean effective
radius. Solid line: radar retrievals; dotted line: CRM results;
dash-dotted line: SCM SNOW random results; thin solid line:
SCM NOSNOW random results.
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Figure 5. “Thin cirrus” micropysical properties as function of
temperature. (a) ice water content, (b) ice water path.
Solid line: radar retrievals; dotted line: CRM results; dash-dotted
line: SCM SNOW random results; thin solid line: SCM NOS-
NOW random results.



physical depth: thin (1 - 2 km), neutral (2 - 4 km), and
thick (4 - 6 km). Note that the vertical resolution of the
SCM at "thin cirrus" levels is about 1.1 km so the cloud
depth can not be less than 1 km. Figure 6 gives the
comparison of IWC between the SCM, the CRM and the
observed "thin cirrus".

The red lines in figure 6 represent results from the
retrievals. The green lines in figure 6 represent the SCM
SNOW results with random overlap assumption, the
yellow lines represent SCM NOSNOW results with
random overlap assumption, and the blue lines are CRM
results. Basically, figure 6 tells us two things. One is that
IWCs incerase with temperature as revealed by the
SCM, CRM and observation, but the increasing rate is
too high in the SCM (as already shown by figure 5). This
resulted in too large IWCs for the SCM warm "thin cirrus"
clouds. The other thing is that the SCM "thin cirrus"
IWCs decrease with cloud thickness, which is opposite
to the retrievals and CRM results which show layer-mean
IWCs increasing with cloud thickness. The mean IWCs
contained in the SCM NOSNOW "thin cirrus" clouds with
depths less than 2 km is about 2 times as large as those
contained in thick (4 - 8 km) SCM NOSNOW "thin cirrus"
clouds, in all of the three temperature classes. The IWCs
of the thin SCM "thin cirrus" clouds are even higher when
maximum/random overlap assumption was used (not
shown).

The retrievals, CRM results, and SCM results all
show that "thin cirrus" IWPs increase with temperature
and cloud depth (not shown). Again, the SCM "thin
cirrus" IWPs increase too fast with temperature.

Most of the SCM NOSNOW "thin cirrus" clouds had
thickness less than 2 km. When random overlap
assumption was used, 10,217 samples, i.e. 78% of the
total samples, were found to have thickness less than 2
km. The number decreased to 5,782 (56%) when

maximum/random overlap assumption was used.
Properties of these SCM NOSNOW "thin cirrus" clouds
influence significantly the statistics of the total samples.
These NOSNOW "thin cirrus" clouds occurred at only
one model level in the SCM. By tracing the change of
IWC in the model, we found that these thin "thin cirrus"
clouds were generated originally by detrainment from
deep convection. The results here suggest that just-
detrained cirrus clouds contain too much ice content.

7. CONCLUSIONS AND DISCUSSION

Compared with the observations, over the entire
simulation period, with the random overlap assumption
the SCM NOSNOW cirrus COF is too large while with
maximum/random overlap assumption it is too small, and
the SCM NOSNOW cirrus occurrence was found to
correlate temporally all right to the GOES high cloud
amount. When subperiods during which clouds were
formed mainly locally were considered, the correlation
increased to 0.68 (with random overlap assumption) and
0.54 (with maximum/random overlap assumption), which
are comparable to that of the radar observations (0.63).
The correlation coefficient of the CRM cirrus COF
increases, too, from 0.30 to 0.70 while those of the
MMCR observations does not show such a increase.
Because snow fraction is over-estimated and snow
extends too low, SNOW analysis decreases the cirrus
mean COF to about half of the SNOW analysis results
and results in poor temporal correlation with the
observations.

NOSNOW SCM cirrus clouds have too high cloud
base hight and many of them occur at a single model
level. SNOW cirrus clouds have too low cloud base
height and too large cloud thickness.

Regardless of the overlap assumption used: the
SCM NOSNOW and SNOW cirrus clouds had too high
cloud top heights probably due to too moist model
atmosphere at cirrus levels; for the SCM NOSNOW and
SNOW "thin cirrus" clouds:

a) large IWP and large layer-mean IWC occur too
often relative to small IWP and IWC resulting in too large
mean IWP and IWC. One possible reason is that the
just-detrained cirrus clouds, which contain too much ice,
have too large cloud fraction in the SCM. The time-height
distributions (not shown) of SCM cloud ice mixing ratio,
detrainment rate of cloud ice, and cloud fraction show
maximum values at same time and height. These
maximum values occur at one single level over too short
time, while the CRM results show much smoother
distribution. This supports our hypothesis. To further
check this hypothesis, we plan to compare the SCM
simulated frequency distributions of cloud fraction and
cloud ice mixing ratio at cirrus levels to the CRM results.

b) the IWP and layer-mean IWC are too large at
most temperature bins considered except at
temperatures lower than 215 K, and they increase with
temperature too fast; One possible reason is that the
SCM cirrus clouds with large IWP and IWC last too long

Figure 6. “Thin cirrus” layer-mean ice water content in three
temperature bins and three cloud thickness bins.
Red: retrievals; blue: CRM results; green: SCM
SNOW random results; yellow: SCM NOSNOW ran-
dom results.



and those with small IWP and IWC last too short. This
could be related to the conversion from cloud ice to
snow.

c) the layer-mean IWCs decrease with cloud
physical thickness, in opposition to the retrievals and
CRM results; This could be caused by the detrainment
process. In the SCM detrainment occurs at too thin layer
compared to the corresponding CRM simulation. If
detrainment occurred in thicker layer, the cloud would be
thicker for the same IWP and lower IWC. This would tend
to correct the errors.

d) the distribution of layer-mean effective radii
covers too narrow a range with a maximum cut-off at
about 75 indicating the limitation of the SCM’s
method to determine the effective radius of cloud ice
particles.

The assumed uniform distribution of sub-grid scale
IWC in the SCM is incorrect. It should be
inhomogeneous at a given level. This assumption should
contribute to part of the problems found.
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