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1. Introduction

The parameterization of vertical transport due to cumu-
lus clouds is often performed by a massflux approach
(Tiedtke, 1989). In such schemes it is assumed that the
cumulus cloud field can be well represented by a top-hat
distribution. An important variable that needs to param-
eterized is the convective massflux (Mc),

Mc ≡ σs(ws − w) = σs(1 − σs)(ws − we), (1)

which is usually diagnosed from the continuity equation
for mass,

∂Mc

∂z
= −

∂σs

∂t
+E −D, (2)

with σs the cloud fraction, and E and D the lateral
entrainment and detrainment rates, respectively. An-
other approach would be to include a prognostic equa-
tion for the vertical velocity in the cloud, which offers
the advantage that it links the thermodynamic state of
the atmosphere to the dynamics by the buoyancy term.
In this paper we will analyze the budgets of the mass-
flux by means of a large-eddy simulation (LES) of shal-
low cumulus based on observations during BOMEX
(Siebesma and Cuijpers, 1995). Moreover, we will
present the vertical velocity variance budget in the mass-
flux approach to assess how well the top-hat approach
represents the Reynolds-averaged budget.

2. The conditionally sampled verti-
cal velocity equation

In our simulations and analyses, we use the Boussinesq
equations and their LES implementation. The filtered
prognostic equation for the resolved part of the momen-
tum equation reads

∂ui

∂t
=

g

θ0
(θv − θv)δi3 −

∂uiuj

∂xj

−

∂π

∂xi

−

∂τij

∂xj

. (3)
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The velocity components ui = (u, v, w) are the com-
ponents in xi = (x, y, z) directions, respectively, π is
the modified pressure (Deardorff, 1973), t is the time,
g the gravitational acceleration, θv − θv the perturba-
tion of the virtual potential temperature with respect to
its horizontally-averaged mean value, θ0 the reference
state potential temperature, δij the Kronecker delta, and
u′′

jψ
′′ and τij are the subgrid flux terms that arise from

the filtering procedure.
Conditionally sampling Eq. (3) gives (Young, 1988;

Schumann and Moeng, 1991)
[

∂w

∂t

]

s

=
g

θ0
([θv]s − θv) −

[

∂w2

∂z

]

s

−

[

∂uhw

∂xh

]

s

−

[

∂π

∂z

]

s

−

[

∂τ3j

∂xj

]

s

(4)

where uh = (u, v), ∂xh = (∂x, ∂y) and the the oper-
ator ’[ ]s’ denotes the conditionally sampled mean. An
identical equation as (4) can be written for the environ-
ment simply by replacing the subscript ’s’ by ’e’. In
the remainder of the paper the square brackets are, for
notational convenience, replaced by subscripts ’s’ and
’e’, except when the operator is applied on a deriva-
tive. Note that if we move the sampling operator inside
a derivative, we must apply Leibniz rule, for example
(Young, 1988)

[

∂w2

∂z

]

s

=
∂[w2]s
∂z

+
[w2]s
σs

∂σs

∂z
+

{∂w2

∂z

}

b,s
. (5)

We compute the entrainment (Ew) and detrainment
(Dw) rates for the vertical velocity from

∂σsws

∂t
= σs

g

θ0
(θv,s − θv) −

∂Mcws

∂z

−

∂σs[w
′′w′′]s
∂z

+Ewwe −Dwws − σs

[

∂π

∂z

]

s

,

(6)

and the continuity equation (2) with E and D replaced
by Es and Ds, respectively. The double primes indicate
the ’subplume’ perturbations.



If we multiply Eq. (4) times a factor σs(1 − σs) and
subtract the conditionally sampled prognostic velocity
equation for the environment multiplied times the same
factor, we obtain a prognostic equation for the massflux
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where we used the notation b to indicate the net effect of
the boundary terms which follow from the application
of Leibniz’ rule. Lastly, we show the vertical velocity
variance equation in the massflux approach which we
have derived from (6) and its counterpart for the envi-
ronment,

∂σs(1 − σs)(ws − we)
2

∂t
= 2

g

θ0
Mc(θv,s − θv,e)

−

∂(1 − 2σs)Mc(ws − we)
2

∂z
− 2Mc ×

[

1

σs

∂σs[w
′′w′′]s
∂z

−

1

1 − σs

∂(1 − σs)[w
′′w′′]e

∂z

]

− 2Mc(

[

∂π

∂z

]

s

−

[

∂π

∂z

]

e

) − (Ew +Dw)(ws − we)
2.

(8)

Note that in the Reynolds-averaging approach the verti-
cal velocity variance budget equation reads

∂w
′2

∂t
= 2

g

θ0
w′θ′

v −

∂w
′3

∂z
− 2w′

∂π′

∂z
− 2w′

∂τ ′

3j

∂xj

.

(9)

where the primes indicate perturbations of the resolved
variables with respect to the horizontal slab-mean value.

3. Results

The large-eddy simulation has been performed with the
IMAU/KNMI model (VanZanten, 2000). The simula-
tion was done with a central-difference scheme (64 x 64
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Figure 1: The vertical velocity variance budget. Linestyles
are according to the legend.

x 75 points). The horizontal and vertical grid spacings
were 100 m and 40 m, respectively. The initialization
was based on the BOMEX field experiment. We per-
formed a simulation of 6 hours, and used the results of
the last 4 hours for our analysis by averaging over all
output fields during this time period. To illustrate the
dynamics of shallow cumulus clouds the budget for the
vertical velocity variance w′2, computed according to
(9), is shown in Figure 1. The buoyancy flux is the pri-
mary production source of w′2. Except for a shallow
layer around the cloud base the buoyancy flux is posi-
tive from the surface up to the inversion layer. At the
top of the mixed layer, where the buoyancy flux is neg-
ative, saturated air parcels can reach their level of free
convection by the upward vertical momentum they have
gained. At these levels the turbulence transport term is
the major term that is producing vertical velocity vari-
ance. In addition, the pressure term gives a positive, al-
beit small contribution, near the cloud base as well. The
turbulent transport term becomes positive again above
about 1100 m. In the bulk of the cloud layer the dissipa-
tion and the pressure gradient term act to destroy vertical
velocity variance. The pressure term redistributes ver-
tical momentum into the horizontal directions, whereas
the dissipation of the resolved vertical motions produces
subgrid scale turbulence motions.

The massflux budgets as computed according to Eq.
(7) are shown in Fig. 2. They have similar features
as the vertical velocity variance budget in Fig. 1. The
buoyancy term in the cloud massflux budget has a neg-
ative value at the upper part of the cloud layer, whereas
w′θ′

v is positive in this part. Therefore, the positive
horizontal-mean buoyancy flux in this layer must be due
to turbulence in the dry environment and to subplume
perturbations within the cloud. The turbulent transport
term is an important production term for the convective
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Figure 2: Massflux budgets for the cloud-environment, cloud
core-environment and updraft-downdraft decomposition, in
the upper, middle and lower panel, respectively. The linestyles
are according to the legend shown in the upper plot.

massflux in the upper part of the cloud layer. The con-
ditionally sampled horizontal advection of vertical ve-
locity, which formally represents the lateral exchange
of massflux, acts to produce massflux at the lower part
of the cloud layer and diminishes the massflux above.
The role of the pressure and subgrid flux terms are sim-
ilar to the ones in the vertical velocity variance budget
in the sense that they both tend to destroy massflux. In
that respect the subgrid flux term is analogous to the
dissipation term in the vertical velocity variance budget,
and this result might be somewhat controversial. Scal-
ing considerations lead to the conclusion that dissipation
by molecular viscosity can be neglected for motions on
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Figure 3: Lateral entrainment (Ew) and detrainment (Dw)
rates, and their sum, for the vertical velocities sampled in the
cloud core.

scales typical for cumulus convection, and that it is only
of importance at the largest wavenumbers of the veloc-
ity spectra, the Kolmogorov scales. The ‘dissipation’ in
the massflux budget, however, arises from the subgrid
term in (3). In the vertical velocity variance equation it
is exactly this term that causes the dissipation. However,
the amount of the resolved kinetic energy that is lost is
not dissipated into heat, but acts as a production term
in the prognostic equation for the subgrid TKE equa-
tion, and therefore the subgrid term can be interpreted
as a mechanism to convert resolved motions into subgrid
perturbations. Hence, in the massflux budgets the sub-
grid parameterization term removes vertical momentum
from the sampled eddies to feed the turbulent motions
of small-scale eddies which have sizes smaller than the
grid size of the LES.

The diagnosed entrainment and detrainment rates for
the cloud core decomposition are shown in Figure 3.
The entrainment and detrainment rates for the vertical
velocity have slightly smaller values compared to the
ones found for conserved variables by Siebesma and
Cuijpers (1995). The entrainment rateEw becomes neg-
ative above 1000 m. For other sampling criteria we also
find negative values for Ew. However, it should be re-
minded that the net effect of lateral mixing in the ver-
tical velocity variance budget equation (8) is given by
−(Ew +Dw)(ws −we)

2. If (Ew +Dw) > 0, this term
acts to dissipate the vertical velocity variance, which is
the case for the bulk of the cloud layer except in a shal-
low layer near the cloud base. This seems to violate the
concept that D(E) represent the lateral mass exchange
from the sampled cloud (environment) into the envi-
ronment (sampled cloud), which rate is uniquely deter-
mined from the conditionally sampled continuity equa-
tion for mass. The Ew and Dw are the effective bulk
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Figure 4: The cloud core vertical velocity variance budget
in the massflux approach according to (8), the dissipation is
represented by the term −(Ew + Dw)(ws−we)

2. Linestyles
are according to the legend.

entrainment and detrainment rates that would make the
vertical velocity budgets balance after the assumption
that the entrained or detrained air properties are the aver-
aged conditionally sampled air properties. The obtained
results for Ew and Dw should therefore be rather inter-
preted as tuned, reciprocal time scales for the condition-
ally sampled vertical velocity equation.

Figure 4 presents the vertical velocity variance bud-
get in the massflux approach (8) for the cloud core. The
dissipation is computed with the values for Ew and Dw

shown in Fig. 3. Although they are not identical, the
physical interpretation of the budget is similar to the ver-
tical velocity variance budget. Since cloud core points
are partly selected on the basis of a positive buoyancy
excess, the buoyancy flux is producing vertical veloc-
ity variance throughout the cloud layer. As a conse-
quence, the cloud core decomposition cannot represent
overshooting clouds that rise due to their inertia despite
a negative buoyancy excess. The turbulent transport and
the subplume contribution are both important in the re-
distribution of vertical velocity variance from the lower
part to the upper part of cumulus cloud layer.

Note that the scale of this budget is much smaller
than for the Reynolds-averaged variance budget (Fig.
1). This indicates, for example, that the virtual poten-
tial temperature flux in the top-hat approach,Mc(θv,s −

θv,e) is much smaller than w′θ′

v. For the cloud-
environment the correspondence is even weaker. This
can be explained by the generation of negatively buoy-
ant cloud parcels due to mixing and a subsequent evap-
orative cooling at the cloud boundaries.

4. Conclusions

In a model in which the entrainment and detrainment
rates are prescribed, and in which the continuity equa-
tion for mass (2) is used to determine the massflux, the
vertical massflux gradient is fully constrained. The ad-
vantage of any prognostic equation for the vertical ve-
locity in the massflux approach is that it links the ther-
modynamic state of the atmosphere to the dynamics by
the buoyancy term. However, it requires the parameteri-
zation of pressure effects and lateral mixing which both
act to diminish the upward vertical velocities in the cu-
muli. An example of a massflux model that includes
a prognostic equation for the vertical velocity is pre-
sented by Lappen and Randall (2001), who developed
this model to simulate clear and cloudy atmospheric
boundary layers.
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