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1. INTRODUCTION 
 

The dissipation of turbulent kinetic energy is of 
fundamental importance to the simulation of turbulent 
dynamics using Large Eddy Simulation (LES) 
(Meneveau and Katz 2000).  Dissipation can be used in 
a diagnostic sense for model calibration (Lilly 1967), 
and to find model coefficients in a LES simulation 
through dissipation matching as in Porté-Agel et al. 
(2001).  Thus, it is important to understanding the 
resulting dissipation from a particular subgrid-scale 
(SGS) model formulation. 

Recent a priori studies exploiting the relative 
eigenvector alignment between the SGS stress, 

jijiij uuuu ~~−=τ , and the filtered strain rate, 
, (Tao et al. 2002, Higgins et 

al.2002) have developed a geometric framework in 
which data can be interpreted.  Within this framework, 
SGS models are decomposed into components akin to 
magnitude and direction and test only the fundamental 
assumptions within SGS model formulations 
(alignment between eigenvectors of the modeled and 
real SGS stress).  In this paper we impose a similar 
geometric framework onto the dissipation equation and 
express the resulting formula in terms of alignments of 
eigenvectors and non-dimensional strain states.  We 
then give an example of how the new formulation can 
be used to predict SGS dissipations when gross 
qualitative information about the alignment (given in 
Tao et al and Higgins et al) is known.  This prediction 
is then compared to data from the atmospheric surface 
layer obtained from arrays of sonic anemometers. 
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2. EXPERIMENTAL DATA  
 
 Two previous studies analyzed the full three 
dimensional alignment between the filtered strain rate 
tensor and the SGS stress tensor.  Tao et al. (2002) 
studied the turbulent flow a 5.7x5.7x4.5 cm3 volume in 
the core of a turbulent square duct flow with 
holographic particle image velocimetry.  They used a 

spatial filter size of ∆=3.3 mm (the Kolmogorov scale 
was about 0.1mm). The Taylor-scale Reynolds number 
was Rλ~ 260.  Higgins et al. 2002 studied the flow in 
the unstable atmospheric boundary layer (Obukhov 
length L =

− T u*
3

κg T 'w '
 was in a range of –30 m to –5 m) 

with two arrays of sonic anemometers (Davis, 
California).  A detailed account of the data set is 
provided in Porté-Agel et al 2001a.  Yet, both studies 
produced strikingly similar qualitative results.  Here we 
provide a brief summary of both experiments.  

In this paper we present data from the same 
experimental setup as used in Higgins et. al. 2002; 
however, the data used in this report were taken under 
near neutral atmospheric stability.  Data were classified 
as having near neutral stability when the Obukhov 
length had an absolute value greater than 60 m 60≥L . 
The near neutral data represents about 30 minutes of 
data and ~40,000 time realizations taken in the summer 
in Davis, California 1999 over bare soil. 
 
3. GEOMETRIC INTERPRETATION OF 
DISSIPATION 
 

Dissipation can be written as ijij S
~

τ−=Π  which is 
equivalent to ( )Str ~τ−=

)

Π  for symmetric tensors. We 
can decompose each of the above matrices 
( ~~(5.0~

iju∂+jiij u∂=S  and jij uuuiij u ~~−=τ ) into their 
respective eigenvectors and eigenvalues by the 
transform T

SSS QQ ~~~S~ Λ

ij
~

=  where Q is a matrix containing 

the eigenvectors of S  and  is a diagonal matrix 
containing the corresponding eigenvalues.  We are then 
left with: 

S
~

S
~Λ

 
( )T

SSS
T QQQQtr ~~~ΛΛ=Π −−− τττ    (1) 

 
The eigenvalues are named according to their 
magnitudes as γβα ≥≥ .  The eigenvalues also satisfy 



the condition 0=++ γβα  (by mass conservation), 
this requires ,0≥α 0≤γ , and β be either positive or 
negative.  Eigenvectors are named by their 
corresponding eigenvalues: αv  is the extensive 
eigenvector, γv  is the compressive eigenvector, and β

v
 

is the intermediate eigenvector.  After carrying out the 
multiplication in (1) we are left with: 
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All nine inner products in equation 2 can be 

expressed in terms of angles: ( )'cos() θ=  when  
is the angle between the vectors (here a and b are unit 
vectors).  Equation 2 now contains nine distinct angles 
and six eigenvalues, but the alignment between the 
eigenvectors of two symmetric tensors is fixed with 
only three angles in Tao et al. 2002 and Higgins et al. 
2002.  There should exist an expression for all nine dot 
products in equation 3 as a function of three angles.  
First we non-dimensionalize the eigenvalues so that 
they can be expressed in terms of two nondimensional 
state parameters,:  
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where ~S =  and 222

τττ γβατ −−− ++= .   

The resulting nondimensional dissipation is now 
bounded between –1 and 1.  From the Lund and Rogers 
1994 paper there are relationships that express the 
nondimensional eigenvalues ( ) as functions of 

the strain state parameter 

SSS ~~~ ,, γβα

( )2~2
~

2
~

~~63

SSS

SSS
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γβα

++

−*s = .   

Similar expressions exist for the nondimensional 
eigenvalues of the SGS stress to the stress state 

parameter 
( ) 2

32
τ

τττ

γ

γβ

−

−−

+
s

*

.  These parameters 

are bounded between –1 and 1 when the filtered strain 
rate tensor is trace free (incompressible flow), and the 
deviatoric part of the SGS stress tensor  is 
subtracted from each of the diagonal elements of the 
SGS stress tensor.  This form of is useful since it 
indicates the type of deformation occurring.  For 
example,  = 1 corresponds to axisymmetric extension 

(i.e. α

ijij
d
ij τδτ 3/1=

*s

s

s =βs > 0,  γs < 0), = 0 (β*s s =0 ) to plane shear, 
and = -1 to axisymmetric contraction (i.e. α*s  s  > 0,  β 

s =γ s  < 0).  Probability density functions of and  
for the data sets of Tao et al. 2002 and Higgins et al 
2002 show qualitatively similar results (i.e. the most 
likely value of was 1 in both data sets corresponding 
to axisymmetric extending motions and that the most 
likely value of was also 1 corresponding to 
axisymmetric compressing motions in the positive SGS 
stress) . 
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Next, we must express the nine individual dot 
products in equation 3 as a function of three angles.  
Here, we will choose angles similar to those used by 
Tao et al. 2002, and Higgins et al. 2002 in a priori 
studies. Briefly, the earlier analysis fixed the relative 
orientation between two tensors with a triplet of angles 
(θ, φ, and ζ).  The angle triplets were calculated for 
each point in the entire data set, and then a joint 
probability density function of the three angles was 
computed.  By interpreting the peaks in the joint PDF 
Tao et al., and Higgins et al. were able to deduce the 
most likely orientation of the SGS stress and filtered 
strain rate eigendirections.  The most likely angle 
configurations deduced from these studies are presented 
in figure 1.   

 (ai)  (aii) 

(bi) (bii) 

FIGURE 1. The alignments deduced by Tao et al. 2002 (a) 
and Higgins et al. 2002 (b).  The first trend (i) is the strongest 
and thus, the most likely.  The second peak (ii) is slightly 
weaker.   
 

An inherent bimodal structure in the tensor 
alignment was observed.  Notice though, that in both 
cases, the angle between the two compressive directions 
(the angle between v  and τγ −

v ) is approximately the 
same (~32° for Tao et al. ~30° for Higgins et al. 2002), 
and in configurations the compressive direction v  is 
perpendicular to the intermediate direction of the 
filtered strain rate, v .   

  



The angles of interest in previous studies and the 
angles used here can be defined as: ( )),(cos ~

1
S

ααθ τ
vv

−
−=

( ))
))τγ −

v pα −
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.  Where 
τ
 is 

the projection of 
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p

S
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S
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 plane and  is 
the projection of 

p
S
~γ

γ  on the 
ττ βγ −− −  plane.  

We circumscribe the set of eigendirections given 
by the filtered strain rate, and the SGS stress with the 
unit sphere. The intersection of the sphere and a plane 
defined by any two eigendirections forms a great circle 
that connects the two respective points on the sphere.  
The radius of this great circle must be 1; therefore, the 
arc-length on a great circle between two points on the 
unit sphere is identical to the angle between the 
corresponding vectors.  Once this transformation is 
made, we can use the standard tools of spherical 
trigonometry to find distances on the sphere.   

The law of cosines for spherical triangles can be 
used to simplify equation 3 so it contains only four 
inner products: 
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And from our particular angle definitions we have: 
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We omit the final form of the equation for brevity, as it 
is often more convenient to start from the compact form 
given in equation 4. 
 
4. DEPENDENCE OF MODE DISSIPATION ON 
STRAIN STATE 
 
 In equation 4 there is a single filtered scale 
quantity: the strain stare parameter (nondimensional 
eigenvalues are a function of this quantity).  Angles 
combine information from filtered and SGS quantities, 
and the SGS stress state, , is a purely SGS scale 
quantity.  Therefore, we must choose a tensor alignment 
and a value for the SGS stress state parameter if we 
wish to explore the dependence of dissipation on 
filtered scale quantities   

*s

*
τ−s

If we assume that the value of the stress state 
parameter , then we are guaranteed to capture 

both alignment modes as  corresponds to 
α

1* =−τs

S~
βτ

1* =−τs
s =βs > 0, and  γs < 0.  The value of  is the most 

likely value of this parameter in the atmospheric data 
set of Higgins et al. and in the square duct turbulence 
investigated by Tao et al..  By inspection of figure 1 we 
see that 

1* =−τs

γ
vv

⊥
*
−τs

− .  Substituting these two conditions into 

equation 4 (  and ) the normalized 
dissipation becomes: 

1= S
~βγ τ

vv
⊥−

 

2
)(),(

~
*
~

*
~

*
~

2
SSSS

S

αγαγγ

τ
τ −−

=
Π −

vv
  (5) 

 
which is a function of a single angle (the angle ( ),~ τγγ −

vv
S

 
that persists in both alignment configurations and the 
strain state parameter.  We can then use the most likely 
value of this angle as observed from data 

75.0),( 2 ≈−τγγ vv
S  (the value reported by Higgins et al. 

2002).  Equation 5 reduces to: 
 

8
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~
*
~

*
~ SS

S

γβ

τ

−
=

Π     (6) 

 
Equation 6 varies in a range between 1/8 when s  
to 5/8 when , and is now a prediction of the 
normalized dissipation based on only filtered scale 
quantities.  The choice of also determines if 
this prediction of dissipation allows for any negative 
values.  The first negative dissipation values are 
allowed when 

1* −=
1* =s

,(γ

2),( τγγ −

vv
S

3/2≤) 2
−τγvv

S , and the prediction 
gives only negative values when ( 3/1)2 ≤−τγ,γ vv

S .  This 
prediction of the mode of dissipation conditioned on the 
value of  can be compared to the sonic anemometer 
data obtained from the near neutral atmospheric surface 
layer in the Davis 1999 experiment.  

*s

A joint probability density function of normalized 
dissipation with the strain state parameter is presented 
in figure 2 (a similar joint PDF is presented in Tao et al 
2002 figure 9a).  The dashed black line denotes the 
prediction based on equation 6.   

This theoretical line tracks very well, but slightly 
over-predicts, the most likely normalized dissipation for 
any given strain state.  Picking larger values for 

2),( τγγ −
vv

S  moves the alignment closer to “eddy 
viscosity,” which is the maximum dissipation 
prediction.  Picking smaller values for ( 2), τγγ −

vv
S  

eventually shifts the prediction curve downward the 
minimum. 

  



 
5. DISCUSSION AND CONCLUSIONS 
 
  The geometry developed by Tao et al. 2002 and 
later used by Higgins et al. 2002 provided an initial 
framework in which to examine the effect of the 
eigenvector alignments of SGS stress and filtered strain 

rate on dissipation.  Through a Spherical Trigonometry 
formulation a nondimensional form of the dissipation 
equation is attained which has only 5 degrees of 
freedom (three angles and two nondimensional 
parameters).  Using observations obtained from 
experimental data of previous studies the behavior of 
the normalized dissipation with respect to the strain 
state is well reproduced.  The formula also predicts a 
unique value of  for which this 
prediction first allows negative dissipation, 

),(cos ~
1

τγγζ −
−=

vv
S

3.34
3
2cos 1 ≅≅ −ζ , and a unique value when the 

prediction of dissipation is negative for all strain states 

7.54
3
1cos 1 ≅≅ −ζ .  The results show the potential of 

interpreting turbulent parameters within a geometric 
framework, and make a clear and immediate connection 
between observable flow properties and the resulting 
dissipation. 
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