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INTRODUCTION

We address the basic equation in Large Eddy Simulation
(LES) of turbulent flow: the filtered Navier-Stokes equa-
tion. The focus will be on the subgrid stress and on the
relation between the filtered fields and the best possible
approximation of the underlying non-filtered fields. The
best approximated fields, found via deconvolution (Geurts
1997; Domaradzki and Loh 1999), will be used to for-
mulate the filtered Navier-Stokes equation such that its
model variables are best approximations of the velocity-
and pressure-fields and simultaneously the tendencies in
the equation are best approximations of the measurable
forces. LES does not prescribe a specific filter, even
though the conclusions that are drawn from LES depend
on the choice of the filter. The reconstructed Navier-Stokes
equation will be seen to make a unification of all low-
pass filtered Navier-Stokes equations. We will show which
wave-wave interactions contribute to the remaining sub-
grid stress term. The reconstructed Navier-Stokes equa-
tion will be related to the classic subfilter formulation of
the filtered Navier-Stokes equation, which is shown to in-
troduce aliasing effects. The expectation values of the sub-
grid stresses in both new and classic formulation term will
be related to Reynolds-decompositions of the flow. Data
from a field-experiment on atmospheric boundary layer
flow will be used to illustrate the theory.

1. LES BASICS

In Large Eddy Simulation (LES) one reduces the number
of nodes required for a simulation in full detail (∼ Re9/4)
to a number of nodes that fits into a computer by low-pass
filtering (symbol ) the equation of motion (NS):

NS(ui, p) −→ NS(ui, p) (1)

In classic LES one rearranges terms and addresses the
following equation, with the appearance of the origi-
nal Navier-Stokes equation, but now expressed in filtered
fields (sum over double indices):

NS(ui, p) −→ NS(ui, p)+ corrections (2a)
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∂t
+

∂
∂xj

(ui uj)=−
∂

∂xi
pmod+ν∇2ui−

∂
∂xj

Deviat(τij) (2b)
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where pmod is a modified pressure, τi j a subgrid-stress,
which has to be modelled:

pmod ≡
p
ρ

+Trace(τ̄̄) (2c)

τi j ≡ uiu j − (ui) (u j) (2d)

Deviat(τi j) ≡ τi j −
1
3

Trace(τ) δi j (2e)

According to functional analysis the best resolved approx-
imation qr of measurable quantity is an orthogonal projec-
tion of the non-filtered field q onto the available functional
space in LES. It is constructed from filtered field q by a
conditional deconvolution over a range [−kr,kr], which
comprizes all resolved scales that have not been sup-
pressed to insignificance (we use threshold value 0.05 for
the suppression) by low-pass filter G (symbol ˆ is a Fourier
transform):
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This operation should always be carried out on LES-fields
before conclusions are made. Otherwise one will get a fil-
tered, distorted view of the flow. We see that, independent
from the choice of the filter type, the reconstructed fields
are equivalent to cut-off filtered fields. This is good news:
the seemingly arbitrary choice of the filter has no conse-
quences for the conclusions that will be drawn from LES.
By placing this cut-off at the Nyquist-point of the numeri-
cal grid (kNyq = π/∆), one maximizes the correspondence
between ’true’ (measurable) and simulated fields.

One could have conditionally de-filtered the equation of
motion a priori and express as many terms as possible in
reconstructed fields:

NS(ui, p) −→(NS(ui, p))r

−→(NS(ur
i , pr))r + correction terms (4a)

Written out this gives the (Galilean invariant) recon-
structed Navier-Stokes equation:
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where we use:

pr
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+Trace(ᾱ̄) (4c)
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To prevent aliasing one has to use a doubly dense grid to
store the intermediate products before the final reconstruc-
tion operation is done.



2. COMPARISON OF RECONSTRUCTED AND
CLASSIC FORMULATIONS

Tensor αij is the great unknown in LES and has to be pa-
rameterized. To get better insight into the influence of ei-
ther τij from the classic LES-formulation, or αij in the pro-
posed a priori reconstructed LES-formulation, we make
Fourier-decompositions of ∂jαij and ∂jτij :
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with kkk′′ ≡ kkk′−kkk and

Fj,α(kkk′,kkk′′) ≡ Ĝcutoff,kr(kkk
′−kkk′′) ·

·


1− Ĝcutoff,kr(kkk
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(k′j − k′′j ) (5b)

Fj,τ(kkk
′,kkk′′) ≡



Ĝ(kkk′−kkk′′)− Ĝ(kkk′)Ĝ(kkk′′)


 (k′j − k′′j ) (5c)

Functions FFFα and FFFτ express the proportionality of non-
linear eddy interactions ûi(kkk

′)ûj
∗(kkk′′) between eddies of

wavevector kkk′ and kkk′′ in the respective subgrid-stress terms.
One-dimensional analogues of FFF are drawn in figure 1: FFFα
is shown on the left, FFFτ for cut-off filtering is shown in the
centre and its equivalent for Gauss-filtering on the right.

The main difference between our proposed reconstructed
formulation of the LES-equation and the classic formu-
lation is the presence in the central and right plot in fig-
ure 1 of interactions of two eddies which are both resolved
(|k′|, |k′′| ≤ kr). These interactions can in principle be cal-
culated from the resolved velocity field via filter-inversion
and can therefore be taken into account, as is shown in
the plot on the left for the new formulation. Not taking
into account these resolved-resolved interactions is a seri-
ous omission, as can be seen from e.g. the central plot.
The purpose of filtering was to eliminate the small scales,
but the contribution to the tendency of the resolved veloc-
ity fields, induced by these resolved-resolved interactions,
has a wave-vector kkk = kkk′ − kkk′′. This can give a subgrid
wave, e.g. along the negative diagonals in figure 1, where
kkk = 2kkk′. In practice this would mean that the grid has to
be doubly refined every timestep, or one would have to al-
low these waves to alias onto resolved waves. The recon-
structed formulation of the filtered Navier-Stokes equation
does not have this aliasing problem.

One can try to improve the classic LES-formulation by ex-
tracting the resolved-resolved interactions from the sub-
grid stress (Biringen and Reynolds 1981):
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where β̄̄ is a subgrid stress (and pmod the corresponding
modified pressure) defined by:

βij ≡ uiuj −ur
i ur

j (6b)

This formulation is only Galilean invariant for filters in-
cluding a spectral cut-off at the Nyquist-point of the grid.
Moreover we see that the advective term requires estima-
tion of the reconstructed velocity. Therefore a further pur-
suit of non-reconstructed formulation (6a), i.e. postpon-
ing the reconstruction of the velocity field until completion
of the simulation, will not give any numerical advantage
above a priori reconstruction of the filtered equation: for
every timestep the field is reconstructed anyhow and re-
naming this intermediate quantity to be the model variable
of the simulation instead of the filtered field makes the two
formulations equivalent for filters including the just men-
tioned cut-off. We conclude that the reconstructed formu-
lation of the LES-equation is superior to the filtered and
’improved’ filtered formulations.

3. EXPECTATION VALUE OF THE SUBGRID
STRESS

As an onset to subgrid stress modelling we will now show
the impact of Reynolds-averaging for those cases where
an expectation value for the mean flow profile is known.
We decompose the velocity into its local expectation value
(indicated with symbol E) and a turbulent fluctuating part
(indicated with a tilde) with use of the following relation:

ui = E(ui)+ ũi with E(ũi) = 0 (7)

With this decomposition we can show that the expectation-
value of the subgrid-stress term is:
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This term does not depend on the statistics of turbulent
quantities! Only mean flow characteristics are required.
This relation also implies that assumptions like ”in ensem-
ble sense the subgrid velocity field obeys the inertial sub-
range spectrum” do not lead to insight into the expectation
value of the subgrid stress, because ”nothing more can be
expected”. Such assumptions will only help with the mod-
elling of the fluctuating part of the subgrid stress. Knowl-
edge of e.g. a log-law for the velocity-profile will give a
good hint for the mean value of the subgrid stress. Instan-
taneous slab-averages may even help to tune the instanta-
nous stresses.

4. APPLICATION TO MEASURED DATA

To show the above relations in practice, we collected 24
hours of 20 Hz samples with a sonic anemometer at two
heights (4 m and 100 m) above grass in Cabauw. The pow-
erspectrum of 1 hour of samples is presented in figure 2,
which shows inertial decay over the last two decades of
the spectrum. We adopt an LES-gridspacing of ∆ = 25 m,
corresponding with 102 samples for the data collected at



4 m. For the filter we take a spectral cut-off at kNyq =
[π/25] m−1 to avoid the final deconvolution step.

We subtracted the mean velocity and used the time-series
to construct a 1D-equivalent of the relations that were pre-
sented above and estimated the total filtered longitudinal
advection ∂x(u2) of momentum in mean flow direction and
its powerspectrum. This is (the 1D equivalent of) the non-
linear term at which LES aims, but which cannot be calcu-
lated during LES, since it requires the squared non-filtered
velocity. The powerspectrum is shown in grey in figures 3
and 5, the physical-space values over an arbitrary segment
of the domain are given in grey in figures 4 and 6. For
classic LES-equation (2b) we estimated the resolved and
subgrid advective terms. These are shown in figures 3
and 4. Equivalents for reconstructed LES-equation (4b)
are shown in figures 5 and 6.

We see that all dynamics involved in the reconstructed
Navier-Stokes equation is resolvable. In the classic for-
mulation the subgrid term is dominated by non-resolved
contributions and the resolved advection and residual sub-
grid effects show short-range fluctuations. It should be
clear that the classic LES-formulation unnecessarily com-
plicates things and that the reconstructed formulation gives
a better, aliasing-free approximation of the filtered total ad-
vection, leaving less to subgrid modelling. To quantify this
we calculated ratios (Xnew for the reconstructed equation
and Xold for the classic equation) of the rms-values of the
respective subgrid-stress terms to the rms of the total fil-
tered advective term. For the record taken at 4 m we found
Xnew = 0.38 and Xold = 0.70. For the 100 m records the
ratios were found in the ranges Xnew ∈ [0.19−0.48] with
a meanvalue of 0.30 and Xold ∈ [0.28−0.85] with a mean
value of 0.53. These values show that advection in the
classic LES-equation is dominated by ’subgrid’ effects. In
the reconstruction formulation the majority of advective
dynamics is now represented by the resolved term.

5. CONCLUSIONS

We have de-convolved the filtered Navier-Stokes equation
over those wavenumbers which are resolved and for which
the filter is invertible. Our proposed model variables are
the ’reconstructed’ velocity- and pressure fields. The re-
sulting ’reconstructed Navier-Stokes equation’ (which still
allows for any filter type) is equivalent to a Navier-Stokes
equation, which is spectrally truncated at the Nyquist
wavenumber of the LES. The truncation error is incor-
porated in the model as the subgrid stress term and was
shown to be Galilean invariant. We conclude that we have
addressed and solved three problems in LES:

• Subjectiveness, connected with the selection of the
filter. The reconstructed Navier-Stokes equation al-
lows for any type of low-pass filter but always gives
the same solution. In the new formulation the mag-

nitude of the required subgrid dynamics, which still
has to be parameterized, is substantially reduced
when compared with the classic formulation.

• Incomparability. In classic LES it was not clear
how the (numerical) model variables should best
be compared with or translated into physical val-
ues from measurements or outcomes from different
LES-studies. Tendencies and model variables in the
reconstructed Navier-Stokes equation were shown to
give the best estimates.

• An aliasing problem, which has been shown to have
serious consequences for the simulation of the con-
vective atmospheric boundary layer in classic LES,
but which is absent in the new formulation.

The solution of these problems is equivalent to a combi-
nation of the following classic techniques: adoption of a
spectral cut-off filter and anti-aliasing of the advective term
by truncation of its spectrum at the Nyquist wavenumber of
the LES. The expectation value of the (both classic and re-
formulated) subgrid term is solely determined by the mean
velocity profile. It does not depend on the turbulent spec-
trum, which only induces fluctuations in subgrid dynam-
ics. The present analysis assumes a spectral LES. When fi-
nite differences are used to estimate differential operators,
then a second filter will enter the filtered Navier-Stokes
equation (Ghosal 1996; Carati et al. 2001). Future study
will have to make clear if the influence of this second filter
on the outcomes of non-spectral LES can be optimized by
the selection of one specific type of filter.
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Figure 1: Interaction selection functions FFF (absolute value) for subfilter stresses. White represents zero, the darkest colour represents the
maximum value. Left: Fα for the reconstructed equation; centre: Fτ for the classic subgrid stress using a cut-off filter; right: Fτ for a Gauss
filter. kc is the point where the filter has a value of 0.05, the strongest suppression which we consider to be invertible.
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Figure 2: Power-spectrum of streamwise velocity u of the record taken at 4 m. Left: double log-plot including -5/3-law to show inertial
range. Right: the y-axis is now linear and multiplied with frequency such that surface areas in the plot are proportional to the power in
frequency ranges. The Nyquist-point of the LES will be approximately placed at 0.1 Hz.
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Figure 3: Power-spectra of:
grey/white: total filtered advec-
tion; ascending lines: resolved
advection in (2b); descending
lines: residual subgrid stress-
term ∂τ/∂x. Results are based
on the cut-off filter.
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Figure 4: Physical space equiv-
alent of fig. 3: grey/white: to-
tal filtered advection; thick line:
resolved advective term in (2b);
dashed line: subgrid stress-
term ∂τ/∂x.
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Figure 5: Equivalent of fig-
ure 3 for reconstructed Navier-
Stokes equation (4b). de-
scending lines: residual subgrid
stress-term ∂τ/∂x
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Figure 6: Physical space equiv-
alent of fig. 5: grey/white: to-
tal filtered advection; thick line:
resolved advective term in (4b);
dashed line: subgrid stress-
term ∂α/∂x.


