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INTRODUCTION

We consider the budget of turbulent kinetic energy (TKE)
in the atmospheric boundary layer (ABL). TKE is pro-
duced at large scales (L ∼ kilometers) and the generated
eddies decay into smaller eddies until their TKE is dis-
sipated at small scales (λ ∼ millimeters). It is difficult
to measure the dissipation in the field, since the available
anemometers either are too coarse to see the dissipating
eddies, or their lab-calibration cannot be used in the field.
In this study we solve the calibration problem by combin-
ing a sonic- and a hotwire anemometer. The combination
is used at the Cabauw-site (4 m and 100 m) to estimate
dissipation and other contributions to the TKE-balance for
different stabilities. Different methods for estimation of
the dissipation will be compared.

1. HYBRID ANEMOMETER

A commonly used anemometer to measure turbulence in
the ABL is the sonic anemometer. It can measure the three-
dimensional velocity vector with a frequency of about 60
Hz. However, the sonic anemometer has a disadvantage:
it averages velocities over a path of about 10 cm. This
path-averaging implies that the smallest structures in the
flow are not measured. Its calibration is robust, but one
cannot use it to measure all terms of the turbulent ki-
netic energy budget. An anemometer often used in the
laboratory is the hotwire anemometer, which can detect
velocity fluctuations at a scale of about 1 mm. This is
small enough to measure the dissipative scales in the at-
mosphere. Its use in the field is restricted for two reasons:
it is fragile and its calibration drifts due to e.g. crystallisa-
tion or dust. We solve the latter problem by constructing
a hybrid anemometer, consisting of a sonic and a hotwire
anemometer (see figure 1). The stable calibration of the
sonic is used to in situ calibrate the hotwire. This hybrid
anemometer enables us to measure at both the production-
and the dissipative scales in the ABL.

To measure wind velocity a sonic anemometer measures
the difference in travel-times of two acoustic pulses along
the same path, but with opposite directions. With a tri-
axial sonic one can estimate the full velocity-vector. The
mean travel-time of the acoustic pulses is a measure for
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Figure 1: Picture of our hybrid anemometer. The hotwire
anemometer is placed near the center of the sonic anemometer

temperature. The transfer-function (spectral sensitivity) of
our sonic is drawn in figure 2. From this figure it is clear
that eddies with a length scale of about one-tenth of the
sonic path-length are not detected.
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Figure 2: Transfer function for sonic path-averaging as a function of
dimensionless frequency for three different cases: velocity in mean
wind direction (line), vertical velocity (small dashes) and tempera-
ture (long dashes).

The sensing element of a hotwire anemometer is a thin
tungsten wire of about 5µm thick and 1 mm long. It is
heated to a temperature of about 200◦C. When a flow
passes the wire, then the wire looses heat. With an elec-
trical circuit the temperature can be kept constant. The
voltage required to maintain a constant temperature is a



measure for the wind velocity. A hotwire anemometer is
in good approximation only sensitive to wind normal to the
wire (van Dijk 1999). We did some static hotwire calibra-
tions (velocity and temperature sensitivity) in the Labora-
tory for Aerodynamics and Hydrodynamics of TU Delft.
These calibrations appeared to be of little value in the field
because of their drift.

To circumvent lab-calibration we developed a proce-
dure to calibrate the hotwire anemometer with the sonic
anemometer. The final measurement in the ABL itself
is used to extract a calibration for the hotwire. First, we
computed the horizontal velocity from the three dimen-
sional sonic velocity. Then the hotwire voltage (taken at
2000 Hz) and the horizontal velocity from the sonic (taken
at 20 Hz) were made of comparable frequency-range by
filtering both records with a Gaussian filter with a cut-off
frequency of 1 Hz. The resulting time-series are used to fit
a calibration curve.

The two estimates for the mean velocities during various
time-series, one via the sonic and the other via the now
calibrated hotwire, matched (as expected: the fast fluctua-
tions do not contribute to the mean wind velocity). In the
frequency-region which is measured well by both the sonic
and the hotwire anemometer (below 1 Hz), the two power
spectra were the identical. We conclude that our procedure
for combining the hotwire and the sonic anemometer is
sufficient to perform measurements at both the production
and the dissipative scales in the ABL.

2. DISSIPATION

We want to test the TKE-balance in the ABL. The new
contribution that can be directly estimated with the just de-
scribed hybrid anemometer is dissipation ε:

ε ≡ ν
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The scale at which dissipation of TKE takes place is the
Taylor micro-scale λ. It is defined as:

λ ≡

(
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)1/2
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This scale is a measure of the average dimension of the
smallest eddies in a turbulent flow. Not much TKE resides
in eddies smaller than the Taylor micro-scale. We estimate
viscous dissipation in two different ways.

The first estimate uses (1), which follows directly from the
Navier-Stokes equation. Assuming an infinite Reynolds-
number, Taylor’s hypothesis of frozen turbulence and
isotropy, the dissipation can be written as:

ε =
15ν
U2

(

∂u
∂t

)2

. (3)

This estimate requires measuring at the small length scales.
In practice equation 3 overestimated viscous dissipation:
a too low AD-resolution gave unrealistically large val-
ues for the spectrum at high wavenumbers, producing
large non-existing time derivatives of the velocity-field.
This problem was solved by inserting one-point variance-
spectrum Eu of velocity u in equation 3: and replacing the
upper integration boundary by a finite wavenumber kd , at
which all viscous dissipation is implied:

ε = 30ν
� ∞

0
k2Eu(k)dk ' 30ν

� kd

0
k2Eu(k)dk (4)

The indirect method for estimating the viscous dissipa-
tion is Kolmogorov’s four-fifths law, which is described
in detail by Frisch (1995). Under assumption of infinite
Reynolds number and isotropic turbulence, one can derive
the following exact relation from the Navier-Stokes equa-
tion

(uuu(xxx+ lll)−uuu(xxx))3
≡ δu(xxx, l)3 = −

4
5

εl (5)

where l is a distance increment. The differences between
the two methods are clear from figures 3 and 4. In the first
a measured dissipation spectrum is shown, indicating that
most of the viscous dissipation occurs at the small wave-
lengths, which consequently will have to be measured. In
the second figure it can be seen that for lengthscales larger
than the Taylor micro-scale (∼ 7 cm) expression 5 con-
verges to a constant value, demonstrating that this method
does not require measuring of the smallest scales. Both
methods will be used in practice in the following section.
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Figure 3: Spectrum of the dissipation. The peak at k ≈ 200m−1

corresponds with a length scale of 3 cm, which is half of Taylor
micro-scale λ.

3. OBSERVATIONAL RESULTS

Our measurements were performed near and at the 213 m
Cabauw tower of the KNMI in the period March-May
2001. The Cabauw tower is unique: The surroudings
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Figure 4: Plot of ε = δu(xxx, l)3/( 4
5 l) versus separation l. For 0.03 <

l < 0.2 the flat behaviour indicates the validity of Kolmogorov’s four-
fifths law and represents ε.

of Cabauw are very flat and homogeneous (short grass).
Therefore we don’t have to worry about disturbances or in-
ternal boundary layers. Furthermore, the mast has booms
of about 9.5 m length in three directions. These booms
enable one to perform measurements undisturbed by the
mast, independent of wind direction. We chose the boom
in the SE-direction, because fully developed convective
boundary layers usually occur during nice spring weather,
when the wind is from the East or South-East. From 9 to
23 May we performed measurements at a height of 100
m. The other measurements were performed on a separate
mast in the field at a height of about 4 m.

We measured under various stability regimes (some full
daily cycles were recorded at 2 kHz with the hybrid
anemometer). We computed three terms of the turbulent
kinetic energy equation, which can be written as:
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To estimate the transport term, we have to know verti-
cal derivatives of third-order correlations. These were not
available and this term is consequently not measured. We
thus consider only shear production, buoyancy and viscous
dissipation. The time derivative can usually be neglected
(stationary situation). In dimensionless form, which can
be obtained by division by κz/u3

∗, this gives:

ΦM −
z
L

+Φε = 0 (7)

where L is the Monin-Obukhov length. We will use symbol
ζ for stability z/L. Both the direct and the indirect method
were used to estimate dissipation. The results of the two
methods corresponded within measuring accuracy.

For stable conditions the different terms of the TKE-
equation and their sum (the inbalance) are plotted as a
function of stability z/L in the plot on the right in figure
5. The lines are regression curves:

ΦM = βM0 +βM1 ·ζ
Φε = βε0 +βε1 ·ζ

(8)

We fitted these curves through the points in the range 0 <
ζ < 1, with the following results:

βM0 = 1.0±0.06
βM1 = 4.0±0.17
βε0 = 0.95±0.08
βε1 = 4.39±0.23

(9)

The parametrisation of ΦM agrees with earlier measure-
ments at the same location. Duynkerke (1999) for example
found a parametrisation of ΦM = 0.9+4.0ζ, which differs
from the commonly used parametrisation of ΦM = 1+5.3ζ
(Högström 1996). More interesting is the parametrisation
of Φε, which is in good approximation balanced by shear
production ΦM , implying an inbalance term which is equal
to minus the buoyancy. All measurements show a positive
imbalance term, indicating that more energy is dissipated
than produced. The most plausible physical process be-
hind this is a term that was neglected in (7): transport of
TKE into the stable ABL. This is in agreement with mea-
surements done by Högström (1996). From the measure-
ments it becomes also clear that the linear curves can only
be used for low-stability ranges. For larger values of ζ,
non-linear corrections have to be added to the lines. This
is in agreement with measurements by Nieuwstadt (1984).

For convective conditions we present the results of the
TKE-balance in figure 5 in the plot on the left. The
dashed lines are commonly used parametrisations: ΦM =
(1 − 19ζ)−1/4 wheras the other dashed line represents
bouyancy, which is by definition equal to −ζ (equation
7). As with the stable cases, we see in this figure a close
balance between production ΦM and dissipation Φε. The
imbalance term is however negative, which means that
more energy is produced than dissipated. This can be ex-
plained from the character of a convective ABL: the large
eddies transport TKE away from the surface (measurement
height) to dump it at greater heights. This transport of TKE
leads to a negative term in the local TKE budget, as was
found. The ratio between the required transport terms and
viscous dissipation is in the order of 25 - 35 percent, which
implies that viscous dissipation is still the dominant sink
of energy. But this also indicates that the contribution of
transport terms to the local kinetic energy-budget may not
be neglected!

4. DISCUSSION

We successfully constructed a hybrid anemometer from a
sonic- and a hotwire anemometer to measure even at the
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Figure 5: Various terms of the dimensionless TKE equation plotted as a function of stability z/L. Left: convective situations, right: stable
cases. In the plots, + signs denote shear-production ΦM , × signs denote buoyancy -ζ, the stars denote viscous dissipation, and the
squares denote their sum: the imbalance. In the convective plot, the commonly used parametrisation for ΦM is plotted, whereas the other
dashed line represents dimensionless buoyancy, which is by definition equal to −ζ. The horizontal line indicates the 0-level. The lines
drawn in the stable plot are regressions to the regime ζ ≤ 1: from the top downward 1+4ζ,ζ,−ζ and 1−4ζ respectively.

smallest scales in the ABL. Our approach is supported by
the result that two totally different methods to estimate
viscous dissipation of TKE (direct and via Kolmogorov’s
four-fifths law) gave the same estimates within measuring
accuracy. We used the method to analyse TKE-balances
in the ABL, where the transport term was estimated as a
residual term to close the balance. Our study showed that,
for all stabilities, there is ‘almost’ a balance between shear,
buoyancy and dissipation. In stable conditions the dissipa-
tion is slightly larger than the production, indicating a pos-
itive transport term. In convective conditions production is
slightly larger than dissipation, indicating a negative trans-
port term. Both indications are supported by the review
written by Högström (1996).

Some recommendations for further research follow from
this study. It is advisable to use hotwire probes with four
wires to measure the complete three-dimensional velocity
field (or more wires for the full gradient tensor, Tsinober
et al. (1992)). A problem may then be the procedure to
calibrate a probe with four wires (van Dijk 1999). We ad-
vocate measurement at greater heights, so that more infor-
mation can be obtained about very (un)stable conditions.
We will have a better understanding of the atmospheric
boundary layer when we know how much turbulent kinetic
energy is transported in convective boundary layers. The
problem of fine AD-resolution needs to be solved: Mea-
surements can be degraded when some samples are beyond
the voltage range of the datalogger. Therefore one needs
a datalogger system that has both a wide range of voltages
and also a fine resolution.
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