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1 Introduction

We consider a thermally conducting slab or solid
base lying between the levels at z = −hb and
z = 0 with the thermal diffusivity κb. Above this
base between z = 0 and z = h there is a layer
of fluid with thermal diffusivity κ and kinematic
viscosity ν (see figure 1). Above z = h there is
an insulating solid (or approximately stationary
fluid above a stable inversion layer). A uniform
vertical heat flux H0 is applied below the solid
base. At the bottom of the fluid layer, i.e. z = 0,
this flux is reduced to ρcpFθ = H0h/(h + hb).
The mean temperature at the interface at z = 0
is T0, and at z = h is Th leading to ∆T = T0−Th.
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Figure 1: Schematic representation of the mean
temperature profile in a convective fluid layer
(h < z < 0) and in a solid base (0 < z < hb)
with a uniform heat flux H0 at the bottom of
the base.

When the Reynolds and Peclet numbers lie in

the range of 1 � Re ≤ 102 and 1 � Pe ≤ 102,
the eddies develop as Rayleigh-Taylor bulge-like
instabilities growing on the heated surface layer.

2 DNS

To check our analysis we have conducted a DNS
(Hunt et al. [1]). In the fluid the velocity- and
temperature equations are discretized by means
of a second-order finite volume method on a
staggered grid (the temperature and pressure
are located in the centre of a grid cell). For
the time advancement a second-order Adams-
Bashforth scheme is used. In the solid, the
energy equation is discretized by means of a
second-order finite volume method in the ver-
tical and a direct solver using a Fourier trans-
form in applied in the horizontal directions. For
the time advancement a backward Euler method
is applied. In the horizontal directions periodic
boundary conditions are assumed for the tem-
perature and the velocities in both the fluid layer
and the base. At the lower and the upper bound-
ary of the fluid layer a no-slip condition for the
velocity is set. A zero heat flux is prescribed
at the upper boundary and at the bottom of the
base a heat flux is applied so that the mean heat
flux at the bottom of the fluid layer is ρcpFθ .

Computations are carried out for two values
of the Rayleigh number Ra∗ = 104 and 105 and
with 0.1 ≤ κb/κ ≤ 10. In all cases the Prandtl
number is Pr = 0.7. The simulations are per-
formed in a rectangular box with an aspect ratio
of the fluid domain equal to 5:1. The depth of
the conductive layer is the same as the depth of
the fluid (hb = h). The resolution in the fluid
layer is 403 grid points for Ra∗ = 104 and 1003

for Ra∗ = 104.
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Figure 2: The three types of buoyant eddy struc-
ture depending on the ratio of the base to layer
conductivity κb/κ: (i) plume; (ii) shortened
plume or elongated puff; (iii) puff .

3 Results

It is found from the numerical solutions that the
largest temperature fluctuations near the sur-
face occur with a constant flux boundary con-
dition and the minimum with a highly conduct-
ing boundary. The spatial scales of eddy struc-
tures in the lowest surface layer of the fluid layer
become significantly smaller as κb/κ is reduced
from 10 to 0.1. In the core of the convective
layer a transition from long duration plumes to
shorter duration and smaller length scale elon-
gated puffs is found as quantified by autocorrela-
tion and spatial correlation functions (see figure
3 and 4).

The hypothesis introduced above has been
tested qualitatively in a laboratory set-up. The
flow structure was observed as it changed from
being characterized by nearly steady plumes,
into unsteady plumes and finally into puffs
where the thickness of the conducting base was
first increased and then the conductivity was de-
creased.

4 High Reynolds numbers

At very high Reynolds numbers, approximately
greater than 104 such as occur in geophysical
applications, the surface boundary layer below
each puff/plume is highly turbulent with a log-
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Figure 3: Spatial correlations of the temperature
fluctuations for the two cases of κb/κ. at z = 0
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Figure 4: Time correlation of the temperature
and vertical velocity fluctuations for the two
cases of κb/κ at z/h = 0.1.

arithmic velocity and temperature profile. In
that case the analysis shows that plumes can
only develop if the surface flux is uniform, for
example by radiant heat transfer or if the base
is very thin (assuming constant heat flux below
the base). Otherwise puffs form (Hunt et al. [1]).
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