
P3.13 A LARGE-EDDY SIMULATION MODEL PERFORMING ON MASSIVELY
PARALLEL COMPUTERS

Siegfried Raasch�and Michael Schröter
Institute of Meteorology und Climatology, University of Hannover, Germany

1 INTRODUCTION

Although many of the present-day LES studies
can be carried out on single processor machines,
there are still a lot of open problems in bound-
ary layer research requiring extreme computa-
tional power (memory as well as CPU power),
for instance the study of interactions between tur-
bulent structures of different scales. Typical ex-
amples are cold-air outbreak (CAO) flows, where
large-scale organized convection simultaneously
occurs together with the usual small-scale con-
vective plumes, or flows around obstacles, where
the large eddies downstream of the obstacle have
their origin in small-scale turbulence generated
at the sharp edges of the obstacle. These stud-
ies require very high grid resolutions and/or large
computational domains. Very high resolution LES
could also be used to test subgrid-scale models
or to check and validate nested LES.
Today, massively parallel computers allow to
tackle some of these problems for the first time.
Of course, on such machines also normal sized
LES studies are running much faster than on sin-
gle processor computers. This permits to carry
out large sets of runs with parameter variations in
a comparably short time.
Nevertheless, existing LES models would have to
be extensively modified, i.e. parallelized, before
they could be efficiently used on parallel com-
puter architectures. The optimum parallelization
strategy may depend on the type of parallel archi-
tecture. Available are machines with distributed
(SGI/Cray-T3E) or with shared memory (SGI-
ORIGIN). On shared memory systems, each pro-
cessor has access to all of a single, shared ad-
dress space (although this access is often nonuni-
form) while on distributed architectures each PE
has his own dedicated memory. In the latter
case special communication calls are necessary
to exchange data between them on a special net-
work. Today, more and more clusters of small-
scale shared-memory machines are available (for

�Corresponding author address: Siegfried Raasch, In-
stitut für Meteorologie und Klimatologie, Universität Han-
nover, Herrenhäuser Str. 2, 30419 Hannover, Germany;
raasch@muk.uni-hannover.de

example IBM pSeries 690). Data exchange be-
tween these shared-memory nodes is also done
by a special network, so these machines com-
bine the characteristics of distributed and shared
memory systems. All these multi processor sys-
tems are available with more than 1000 proces-
sor elements (PEs). Regardless of the system
architecture, an optimally parallelized LES code
should meet at least three requirements: (1) The
additional communication overhead between PEs
caused by the parallelization method in combina-
tion with the special architecture of the machine
should be small compared with the total CPU time
of the code. (2) The program should show good
scalability, i.e. it should efficiently run on an arbi-
trary large number of PEs. (3) There should be a
good load-balancing between the PEs in order to
avoid idling of PEs.

2 THE LES-MODEL PALM

Because the parallelization affects the basic
structure and many parts of the LES code, we
decided to develop and write the code of our
new PArallelized LES Model PALM from scratch.
Nevertheless, the new model was based on the
well established methods and the same systems
of equations that we used before in our old se-
quential LES model, which had been success-
fully applied earlier to problems of atmospheric
and oceanic convection (Schröter et al., 2000,
e.g.). It solves the non-hydrostatic Boussinesq-
approximated Navier-Stokes equations and uses
a one-and-a-half-order subgrid closure scheme.
It contains a water cycle with cloud formation
and precipitation processes and it takes into ac-
count infrared radiative cooling at the cloud tops.
Time integration is performed using the leap-
frog scheme. Lateral boundary conditions of the
model are cyclic and Monin-Obukhov similarity is
assumed between the surface and the first com-
putational grid level above.
PALM is originally designed for use on parallel
computers with distributed memory, but it also
runs efficiently on machines with shared mem-
ory architecture (currently, we are also optimiz-

ing the code for use on clustered systems). As
it is totally recoded, we took this as a chance to
switch from FORTRAN77 to FORTRAN90 in or-
der to make use of helpful features like array as-
signments available in the new standard.

2.1 PARALLELIZATION TECHNIQUE

In case of an LES model for boundary layer flows,
we found that the requirements for an optimally
parallelized code mentioned in Section 1 are
achieved best by the method of two-dimensional
domain decomposition. The total computational
domain is divided into equally sized subdomains,
which are assigned to the PEs - one subdomain
per each PE -, and each PE solves the whole set
of model equations on its subdomain. In case of
PALM, the decomposition is done in the two hor-
izontal directions x and y (s. Figure 1) because
decomposing the domain in this way guarantees

0 3 6

1 4 7

2 5 8

i,x

j,y

k,z

f(i,j,k)

f(k,j,i)

Figure 1: Principal view of the two-dimensional domain
decomposition. Subdomains of each processor ele-
ment (PE) are labelled with the PE number. Grid points
on the side walls of the subdomains (shaded rectan-
gles) are stored almost consecutively in memory, when
array indices are arranged as f(k,j,i).

that all subdomains have identical properties, es-
pecially with respect to the bottom and top bound-
ary conditions. Additionally, the decomposition
provides scalability up to several thousand PEs.
In such a case, a one-dimensional decomposition
would require the model to have several thousand
grid points in at least one direction.
PALM uses finite differencing, since the numer-
ous calculations of horizontal Fourier transforms
necessary when using pseudospectral differenc-
ing would significantly decrease the model per-
formance in case of a 2D-decomposition. Prob-
lems with local data dependencies, which arise
from the need of computing central finite differ-
ences at the side boundaries of the subdomains,

0

1

2

3

4

5

6

7

8

0

3

6

1

4

7

2

5

8

0

3

6

1

4

7

2

5

8

0

3

6

1

4

7

2

5

8

FFT along x FFT along y
solving linear set

of equations

Transposition: z x x y y z

Figure 2: Assignment of subdomains to the PEs (0-8)
at the beginning (left) and after each transposition step
needed for solving the Poisson equation (only half of
the cycle is shown). Those parts of the Poisson solver
to be carried out after the respective transpositions are
listed at the bottom.

are solved by introducing additional ghost points,
which means that arrays are expanded in each
horizontal direction to hold necessary data from
neighbouring processor elements. In order to
achieve an optimal speed for the exchange, grid
points at the side boundaries should be arranged
in consecutive order in memory. This is ensured
best (in FORTRAN) when the order of array in-
dices, which has been f(i,j,k) in the old model,
is rearranged to f(k,j,i), where indices i, j, and k
are identified with coordinates x, y, and z, respec-
tively (s. Figure 1).
The solution of the Poisson equation is also com-
plicated by the domain decomposition, because
non-local data dependencies appear in all three
directions. In the direct method that we are actu-
ally using, FFTs have to be performed along x and
y and a tridiagonal system of linear equations has
to be solved in z-direction. This method is par-
allelized as follows: first, the three dimensional
pressure field is transposed in such a way that all
related data values along the x-direction (of the
total domain) reside on the same PE (s. Figure 2).
After that, the x-FFT can be done in conventional
manner (for example by using FFT routines from
standard scientific libraries), followed by a trans-
position from x to y, an FFT along y and another
transposition from y to z. Now the transformed
perturbation pressure can be computed by solv-
ing the resulting tridiagonal linear system (also
non-parallelized). Finally the procedure has to be
passed through in backward order to transform
the pressure from phase space back to Cartesian
space.
Although the transpositions lead to extensive data
traffic between all PEs, the overhead produced
by this procedure on machines with fast PE inter-
connections (SGI/Cray-T3E, SGI-Origin) is small
compared with the total computing time of the
model (see Section 2.2). Recently, we imple-

mented a multigrid method to solve the Pois-
son equation on cluster architectures with slow
node interconnections as an alternative to the
FFT method (see Section 4).
Communication between the PEs is realized by
the message passing interface MPI, which has
become a quasi-standard on massively parallel
systems. The cyclic horizontal boundary condi-
tions of the model are realized implicitly by creat-
ing a virtual two-dimensional topology of proces-
sors where the processors at the corresponding
‘ends’ of single rows or columns are connected
together, respectively. In this virtual topology, the
leftmost processor in a row, for example, knows,
that it has to exchange ghost points with the right-
most processor of the same row and vice versa.
Due to the periodic boundary conditions, identi-
cal lines of code can be executed on each PE,
which allows the parallel structure of the model to
be very simple.

2.2 PERFORMANCE ANALYSIS

PALM has been extensively tested on Cray-T3E
machines. Figure 3 shows the model speed-up
s(P) (defined by the ratio between the compu-
tational time needed on one PE and the time
needed on P PEs) for runs with a ‘small’ do-
main of 160�160� 64 grid points. In case of
an ideal scalability the speed-up should be dou-
bled by doubling the number of PEs used. The
model meets this condition very well. For PE
numbers larger than 100 the speed-up is a little bit
smaller than in the ideal case, because the sub-
domains become too small. In these cases the
ratio R between the total number of grid points
of a subdomain and the number of ghost points
is getting larger so that the communication over-
head for exchanging ghost points becomes no-
ticeable. Figure 4 illustrates the communication

1 3 6 10 30 60 100 300
P

1

3

6
10

30

60
100

300

s(
P

)

1 3 6 10 30 60 100 300

1

3

6
10

30

60
100

300

PALM
ideal

PALM
ideal

Figure 3: Speed-up s(P) of PALM on a Cray-T3E as a
function of the number of PEs P used.

overhead. Shown are execution times relative
to the total execution time of PALM for the ex-
change of ghost points (MPI function sendrecv)
and for the data transpositions (MPI function all-
toallv) as a function of the grid ratio R. In this test
all runs were performed on a constant number
of 512 PEs whereas the domain sizes vary from
32� 32�160 (R = 0:3) up to 1216�1216�160
grid points (R = 12:6). Corresponding subdo-
mains vary from 2�1� 169 to 76�38� 160 grid
points, excluding ghost points. The additional
ghost points increase the total number of grid
points by 400 % in case of the smallest total do-
main and by 8 % in case of the largest domain,
which demonstrates that the memory overhead
due to parallelization remains small provided that
the subdomains are sufficiently large. Figure 4
shows that the total communication time of the
model remains smaller than 10 % of the total
execution time of the model, as long as R >

2. For small subdomains the exchange of ghost
points dominates the communication time, while
the transposition time is nearly independent from
R. Using the multigrid method instead of the FFT

Figure 4: Relative execution time needed for communi-
cation between PEs as a function of the grid ratio R.
See text for further explanations.

method for solving the Poisson equation elimi-
nates the need for the exchange of large amounts
of data due to the transposition. Presumably, the
multigrid method will be of advantage for cluster
systems. On the Cray-T3E, this method needs as
much CPU time as the FFT method, as long as
the total number of grid points is large enough.
Figure 5 shows the total CPU time used for 205
timesteps with 3843 grid points for different num-
bers of PEs. Additionally, the figure demonstrates
that the model also scales on shared memory
systems (SGI-Origin 2800). Overall, PALM meets
all the requirements for an optimally parallelized

10 100 1000
P

100

1000

10000

100000

tim
e

in
 s

10 100 1000

100

1000

10000

100000

CRAY−T3E
CRAY−T3E (multigrid)

SGI−Origin 2800
IBM pSeries 690

CRAY−T3E
CRAY−T3E (multigrid)

SGI−Origin 2800
IBM pSeries 690

Figure 5: Comparison of PALM execution time on dif-
ferent massively parallel computers.

code mentioned in Section 1. More details of the
performance analysis can be found in Raasch and
Schröter (2001).

2.3 ADDITIONAL MODEL FEATURES

Even modern graphic hard- and software on
front-end machines is unable to process the
huge three-dimensional data at a sufficient
speed. We are solving this difficulty by run-
ning parts of the visualization process in par-
allel as a part of the numerical model. In-
stead of raw data, only graphics primitives (de-
scriptions of polygons, lines or points in 3D
space) are sent to the graphic workstation from
which the final pictures can be created with
considerably reduced expense of computational
power. Visualization examples can be found un-
der http://www.rvs.uni-hannover.de/projekte/tele-
immersion/demo/cbl.html. PALM includes a par-
ticle model which can be used for flow visualiza-
tion as well as for dispersion modelling. A detailed
documentation is available via the PALM-group
web-pages of our institute (http://www.muk.uni-
hannover.de/�raasch/PALM group).

3 APPLICATIONS

PALM has recently been applied successfully to
study boundary layer turbulence above inhomo-
geneous terrain (Raasch and Harbusch, 2001,
see also papers in this preprint volume: P6.18,
15.8), the turbulent flow in the vicinity of Arctic
leads (Weinbrecht and Raasch, 2001), and orga-
nized convection during cold air outbreaks (see
paper 3.5) as well as to improve turbulence pa-
rameterization (see paper P5.10). The CAO study
used a very large domain with 704� 704�80 grid
points. The model is also used for comparison
with near-surface turbulence measurements (see

papers 9.4 and 9.9). For these studies, simu-
lations with grid spacings of 0.5 m and 700 �

700�350 grid points have been performed.

4 OUTLOOK

First runs of PALM on 24 PEs of an IBM pSeries
690 are quite promising (see Figure 5). Never-
theless, considerable effort will be neccessary to
account for the very slow node interconnection of
the cluster, which will become apparent if more
than 32 PEs are used. Actually, we are work-
ing on the implementation of non-cyclic horizontal
boundary conditions in order to study the effect of
skewed inversion layers on the cloud street struc-
ture within CAOs. We also plan to implement an
irregular lower boundary, which is needed to sim-
ulate the turbulent flow around buildings, and to
realize grid-nesting by coupling two or more sim-
ulations running simultaneously on different sets
of PEs.

ACKNOWLEDGEMENTS

This project was funded by the Deutsche
Forschungsgemeinschaft under contract num-
bers RA 617/3-3 and 446 KOR 113/124. Most
of the runs were performed on massively parallel
machines at the Konrad Zuse Zentrum für Infor-
mationstechnik in Berlin and at the John von Neu-
mann Institut für Computing in Jülich, Germany.

References

Raasch, S., G. Harbusch, 2001: An analysis of
secondary circulations and their effects caused
by small-scale surface inhomogeneities using
large-eddy simulation. – Boundary-Layer Mete-
orol. 101, 31–59.

Raasch, S., M. Schröter, 2001: PALM - A large-
eddy simulation model performing on massively
parallel computers. – Meteorol. Z. 10, 363–372.

Schröter, M., J. Bange, S. Raasch, 2000: Simu-
lated airborne flux measurements in a LES gen-
erated convective boundary layer. – Boundary-
Layer Meteorol. 95, 437–456.

Weinbrecht, S., S. Raasch, 2001: High resolution
simulations of the turbulent flow in the vicinity
of an Arctic lead. – J. Geophys. Res. 106, C11,
27035–27046.

