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1. Introduction

In a first-order K-diffusion closure model it is as-
sumed that the turbulent vertical flux 〈w′χ′〉 of a
generic quantity χ can be parameterized as an eddy-
mixing coefficient Kχ multiplied by the local mean
vertical gradient

〈w′χ′〉 = −Kχ

∂〈χ〉

∂z
, (1)

where the operator 〈〉 represents the horizontal slab-
mean value. However, since a few decades it is
known from aircraft observations that in the interior
of the clear convective boundary layer (CBL) the ver-
tical flux of the (virtual) potential temperature flows
counter the mean vertical gradient (Lenschow, 1970;
Warner, 1971). In order to allow for a countergradi-
ent heat flux, 〈w′θ′〉, a correction term (γθ) to (1) has
been proposed (Deardorff, 1972; Holtslag and Moeng,
1991),

〈w′θ′〉 = −Kθ

(

∂〈θ〉

∂z
− γθ

)

. (2)

This type of parameterization has been discussed in
detail by Stevens (2000). Other general expressions
for the scalar flux have been suggested by, for ex-
ample, Wyngaard and Weil (1991) and Cuijpers and
Holtslag (1998). These authors proposed a correction
term 〈w′χ′〉NL that depends on the skewness of the
vertical velocity field,

〈w′χ′〉 = −Kχ

∂〈χ〉

∂z
+ 〈w′χ′〉NL. (3)
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In this investigation we systematically explore for
which ratio between the entrainment flux and the sur-
face flux the vertical scalar flux is not down the mean
vertical gradient. For this study results from a large-
eddy simulation (LES) of a convective boundary layer
have been used. The linearity of the transport equa-
tion for the passive scalars allows the use of the prin-
ciple of superposition of variables, and the inclusion
of a top-down and bottom-up scalar to the simulation
therefore makes that a scalar with any flux ratio can
be reconstructed.

2. Set-up of the experiment

a. The principle of the superposition of variables

To diagnose the fields of an arbitrary passive scalar χ
we will make use of the linearity of its transport equa-
tion and apply the principle of superposition of vari-
ables (Wyngaard and Brost, 1984; Moeng and Wyn-
gaard, 1984) . Let χ be given by a linear superposition
of two variables φ and χ,

χ = aψ + bφ+ c. (4)

with a, b and c arbitrary constants. The variable ψ has
a flux 〈w′ψ′〉0 at the surface, and is therefore referred
to as a ’bottom-up’ scalar. In contrast, the ’top-down’
scalar φ has no surface flux. However, a turbulent flux
is generated by entrainment at the top of the boundary
layer (〈w′φ′〉T ) if it is initialized with a jump ∆〈ψ〉
across the inversion. After applying Reynolds de-
composition on (4) and multiplication by w′ we can
express the vertical flux 〈w′χ′〉 as a function of the
bottom-up and top-down fluxes,

〈w′χ′〉 = a〈w′ψ′〉 + b〈w′φ′〉. (5)

By choosing appropriate values for a and b we can
obtain any arbitrary flux ratio rχ, which is defined as



the ratio of the flux of χ at the top of the boundary
layer and at the surface, indicated by the subscripts T
and 0, respectively,

rχ =
〈w′χ′〉T
〈w′χ′〉0

. (6)

b. Large-Eddy Simulation of the CBL

The large-eddy simulation has been performed with
the IMAU/KNMI model, e.g. VanZanten (2000). The
filtered prognostic equation for the resolved part of an
arbitrary conserved variable χ reads

∂χ

∂t
= −

∂ujχ

∂xj
−
∂u′′jχ

′′

∂xj
, (7)

where u′′jχ
′′ is the subgrid flux. In the LES model the

subgrid flux is expressed as the product of an eddy
diffusivity and the local gradient of the resolved vari-
able. The eddy diffusivities of all the passive scalars
are identical. The simulation has been done with 256
x 256 x 80 grid points. The horizontal and vertical
grid spacings were 100 m and 20 m, respectively. The
results presented in this paper represent a time aver-
age over the fourth hour of the simulation.

The initial height of the boundary layer was set to
810 m, and the jumps across the inversion were ∆〈θ〉
= 5.0K, ∆〈qt〉 = -2.5 g ·kg−1, ∆〈ψ〉 = 0.0, and ∆〈φ〉
= 0.1. Above the inversion these quantities were set
at a constant value. The surface fluxes were constant
during the entire simulation, 〈w′θ′〉0 = 0.05 mKs−1,
〈w′q′t〉0 = 1.5 ·10−2 (g ·kg−1)ms−1, 〈w′ψ′〉0 = 0.001
ms−1, 〈w′φ′〉0 = 0.0 ms−1 and u∗ = 0.01 ms−1.
There were no large-scale forcings like subsidence or
radiation prescribed .

3. Results

The vertical fluxes for the bottom-up and top-down
scalar are shown in Fig. 1. In the same figure we
show the eddy diffusivities Kψ and Kφ, which we
have computed from,

〈w′ψ′〉 = −Kψ

∂〈ψ〉

∂z
, (8)

and similarly forKφ. The fact thatKψ andKφ have a
positive value at all levels in the boundary layer indi-
cate that the bottom-up and top-down scalar fluxes are

down the mean gradient. Note that due to the devel-
opment of a small inversion with time the bottom-up
flux has a small flux due to entrainment at the top of
the boundary layer. If the superposition principle is
applied to construct the field of scalar which has no
entrainment flux at the top of the boundary layer, neg-
ative eddy-diffusivitiesKψ are found at the top of the
boundary layer (Moeng and Wyngaard, 1984).
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Figure 1: The a) vertical flux and b) the eddy diffusivity
for the bottom-up and the top-down scalars. The fluxes have
been scaled by their maximum value.

The levels in the boundary layer where the mean
vertical flux is counter the mean gradient are found
from the following criterion,

〈w′χ′〉
∂〈χ〉

∂z
> 0. (9)

Fig. (2) shows that countergradient fluxes are mani-
fest for negative flux ratios ratios, in particular for the
range −2 ≤ rχ ≤ 0. Obviously, there is no symmetry
at a flux ratio rχ = 0. For quantities that have a very
small flux ratio close to zero, the flux is countergradi-
ent in the upper part of the boundary layer. Hence, for
quantities that have a positive vertical flux throughout
the boundary layer (rχ > 0.04) a correction term like
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Figure 2: The shaded area indicates the levels at which
the vertical turbulent flux is counter the mean gradient. The
maximum flux ratio for which countergradient fluxes are ob-
served is rχ = 0.04. Not shown is a very shallow layer just
above the surface layer with countergradient fluxes for flux
ratios rχ ≤ −6. The height is scaled with the boundary
layer depth (850 m). The vertical dashed line indicates the
buoyancy flux ratio.

γθ in (2) that accounts for countergradient behavior is
unnessecary.

4. Flux parameterization

In this section we will present a parameterization for
the vertical flux 〈w′χ′〉 on the basis of the superposi-
tion principle. We aim to derive a ’classical’ down-
gradient formulation and a ’correction’ term which
depends only on the flux ratio of the quantitity under
consideration. To this end, let us combine (5) and (8)
to express the vertical flux 〈w′χ′〉 as a function of the
parameterized bottom-up and top-down fluxes,

〈w′χ′〉 = −aKψ

∂〈ψ〉

∂z
− bKφ

∂〈φ〉

∂z
. (10)

The vertical gradient of 〈χ〉 can be incorporated by
substituting the vertical derivative of the horizontal
slab mean of (4) into (10),

〈w′χ′〉 = −Kψ

∂〈χ〉

∂z
− b(Kφ −Kψ)

∂〈φ〉

∂z
. (11)

The factor b is constrained by (5),

b =
〈w′χ′〉T
〈w′φ′〉T

− a
〈w′ψ′〉T
〈w′φ′〉T

. (12)

where the factor a is given by

a =
〈w′χ′〉0
〈w′ψ′〉0

, (13)
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Figure 3: The factor Γ in Eq. (11).

For a bottom-up flux which has no flux at the top of
the BL the second term on the rhs of (12) cancels.
However, since the bottom-up scalar in our case has a
small entrainment flux due to the very weak inversion
jump that has developed with time, its effect on the
factor b is taken into account by (12).

Note that with a top-down scalar and any other
quantity that has an arbitrary flux ratio the superpo-
sition principle enables to reconstruct all fields for χ.
For example, it is possible to replace the bottom-up
scalar by the humidity which will yield a similar ex-
pression as (11). If the humidity jump across the in-
version is significant the second term in (12) cannot
be neglected in that case.

The factor Γ = −(Kφ−Kψ)∂〈φ〉
∂z

from Eq. (11) is
shown in Fig. (3). Γ has a maximum just above the
middle of the boundary layer, and it has a small neg-
ative value near the surface. Note that for the CBL Γ
has an uniform shape since the eddy diffusivities, and
the vertical gradient of the bottom-down scalar have
an universal vertical profile. In fact, the formula (11)
has a similar structure as (3) and could therefore serve
as a parametrization for vertical fluxes in the CBL.

However, we would like to express (11) in a form
like (2),

〈w′χ′〉 = −Kψ

(

∂〈χ〉

∂z
− bγ(z)

)

, (14)

with

γ = −

(

Kφ

Kψ

− 1

)

∂〈φ〉

∂z
. (15)

Figure (4) shows that the factor γ is large and max-
imum in the inversion layer layer. The shape of the
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Figure 4: The correction factor γ according to (14).

vertical profile for Γ can be understood from the fact
that the eddy diffusivity Kψ is based on the bottom-
up scalar, which has only a very weak entrainment
flux. Thus, for any other quantity that has a significant
jump across the inversion the correction term γ must
account for the representation of the entrainment flux.
Clearly, the complicated vertical structure for γ illus-
trates that it is hard to find an average value which can
serve as a representative value for the entire boundary
layer.

In summary, from the fields of an arbitrary scalar
and a top-down passive scalar two eddy diffusivities
can be computed. Both eddy diffusivities are included
in the correction factor γ (or Γ). Then only one free
parameter remains, namely b which depends on the
surface and top (entrainment) fluxes of χ.

5. Conclusions

First, we have shown that for the CBL the existence of
countergradient fluxes are predominantly limited to a
range of negative flux ratios. For positive flux ratios
(rχ > 0.04) we did not find evidence of countergradi-
ent fluxes.

Second, on the basis of the principle of superposi-
tion of variables we have derived a parameterization
for the vertical flux in the CBL. It is an exact parame-
terization since no assumptions have been made in its
derivation. It can be applied to conserved quantities
with arbitrary flux ratios. The correction factor γ al-
lows for countergradient fluxes. The form of the sug-
gested parameterization is based on expressions sug-
gested in literature and can therefore be used to vali-
date current K-diffusion parameterizations.

Third, by the simplicity and elegance of the super-

position of variables principle we like to advocate this
approach for the study of other types of convective
boundary layers, like stratocumulus.
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