
1.  INTRODUCTION 
 
Dense gas dispersion for risk assessment is usually 

modelled by simple box models or shallow-water type 
models, in which vertical distributions are parameterised 
by similarity profiles. The dilution by ambient air will 
depend on cloud density and the available turbulent 
kinetic energy generated by shear production and 
convective heat flux driven by the temperature 
differences between the ground and a cloud released 
with negative enthalpy. The vertical integral of excess 
buoyancy is gradually moderated, as the cloud 
accumulates heat from the ground and spreads in the 
crosswind direction and eventually the mixing will 
approach passive dispersion. Thus, a dense-gas 
entrainment function must be quite general. There are 
very few field measurements of dense-gas turbulence, 
so instead we match the formula with generic reference 
cases such as free convection, forced convection, 
stratified shear flow and passive dispersion.  

 
2. LITERATURE REVIEW 
∗∗∗∗ 

In box models for dense-gas dispersion mixing is 
simplified to an air flux across a virtual interface 
surrounding a well-mixed volume. The mixing rate is 
referred to as the entrainment velocity eu  [ -1ms ] and a 
typical parameterisation (Britter 1988) for this is 
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The Richardson number Ri gh eρ ρ≡ ∆  is a measure of 
cloud stability defined by a characteristic density 
difference ρ∆ , gravity g, a characteristic layer height h, 
and a measure of turbulent kinetic energy e . For 
practical reasons Britter (1988) applied the ambient 
friction velocity 2

*e u= , whereas other developers apply 
the friction velocity within the gas layer. The product of 
the characteristic layer height and box-model 
concentration is usually set equal to the depth integral of 
the true distribution. Britter (1988) applied the surface 
concentration as reference and operated with a 
relatively low layer height, whereas van Ulden (1983) 
defined the layer height as twice the centre of gravity, 
giving a relatively low box-model concentration. It is 
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worth noting that calibration coefficients of entrainment 
functions similar to Equation (1) depend on such model 
definitions.  

Dense gas clouds of practical interest are usually cold 
with heat convection from the ground as an additional 
source of turbulent kinetic energy. The velocity scale for 
this process is defined by:  
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where ϕ  [W m-2] is the heat flux, pc [J (kgK)-1] is heat 
capacity and T  [K] is the absolute cloud temperature. 
Eidsvik (1980) proposed an entrainment model (F2 in 
Table 1) based on a combined turbulence scale  
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where *u  is the friction velocity estimated inside the 
plume.  

The DEGADIS entrainment function, labelled F3 in 
Table 1, has yet another definition of the turbulence 
scale (Spicer and Havens, 1986). The Richardson-
number dependence seems very different, but actually it 
is just a slight modification. The limit of weak cloud 
stability 0Ri →  depends on ambient stability as 
reflected by the coefficient α  of the power-law 
approximation to the wind profile.  

In an early version of the SLAB entrainment function, 
labelled F4 in Table 1, the turbulence parameterisation 
includes the front velocity of the spreading plume 

fu g h′≅  and the velocity slip between plume and 
ambient air and uδ  (Morgan et al., 1983). Later on 
(Ermak 1990) modified the SLAB model for inclusion of 
ambient stability similar to Spicer and Havens (1986). 
The remaining models labelled F5 and F6 are discussed 
below.  

 
3. REFERENCE CASES 
 

Table 2 lists a set of reference cases. The first case is 
passive dispersion of a neutrally buoyant surface plume 
with a growth rate proportional to the turbulent friction 
velocity *u . The proportionality factor 1λ  depends on 
the definition of the box-model height h  and the quoted 
value is calculated from Sutton’s (1953) analytical 
solution using van Ulden’s (1983) interface definition, 
which set the height h  to twice the centre of gravity.  
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Table 1 Selected entrainment functions. 

ID Entrainment function Special definitions 
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Early SLAB (Morgan et al., 1983) 
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(Jensen and Mikkelsen, 1984) 
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With this definition the layer always have the  right 
otential energy. The more common choice of h  equal 

o the centre of gravity leads to 1 0.35λ ≈ .  
The entrainment rate in the limit of strongly stratified 

hear flow was determined in the laboratory experiment 
y Kato and Phillips (1969). The setup was an annular 
ank with stratified water and constant shear stress 
nduced by a moving screen at the surface. This 
roduced a turbulent well-mixed upper layer, which 
radually entrained the quiescent stratified fluid below.  
The entrainment rate in the limit of weak free 

onvection is Bo Pedersen's (1980) interpretation of 
armer's (1975) measurements of the thermal 
evelopment in an ice-covered lake in the spring 

season. The thermal expansion coefficient of water is 
negative near the freezing point and solar heating at the 
surface produced a convective layer. The mixing rate 
was deduced from the vertical phase propagation of the 
diurnal component of the temperature signals. 

The entrainment rate in the limit of strong free 
convection was measured in the laboratory experiment 
of Deardorff et al. (1980) in which initially stratified water 
was heated from the bottom.  

For comparison we include the limit values of the 
entrainment functions in Table 1. Some differences are 
a result of varying definitions of the layer height and 
box-model concentration.  

 
4. MATCHING REFERENCE CASES 

 
Jensen (1981) simplified the turbulent kinetic energy 

equation to:  
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where the indices refer to direction. The terms in the 
equation are the temporal change 1t ; advection 2t ; work 
by friction 3t ; work by gravity 4t ; turbulent diffusion 5t ; 
work by pressure perturbations 6t ; and the energy 
dissipation rate 7t ε= [ 2 -3m s ]. A scale analysis of this 
equation leads to:  
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where the turbulence scale is defined by 2 2 2

* 5 *e u c w= + . 

able 2 Empirical mixing rates at reference cases 
efined by 
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The buoyancy term is split into two parts - energy 
production by heat convection 4at  and energy 
consumption by entrainment 4bt . The last three terms 
are all proportional to the cube of a velocity scale 
divided by a length scale. Rearranging (5) leads to the 
following entrainment function: 
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Jensen (1981) originally set 5 1c =  and neglected the 
buoyancy production by convection 6 0c = . 
Furthermore, Jensen and Mikkelsen (1984) found it 
necessary to set 0 0e =  in order to avoid a singularity 
for the limit of passive dispersion. This may appear like 
a bold assumption of an ever-quiescent ambient fluid, 
but the motivation was simply to match the limit of 
passive dispersion. Such pragmatism is permitted, since 
in this case the energy budget degrades to a balance 
between production and dissipation with insignificant 
energy feedback by entrainment.  

In search of a solution including turbulence production 
by heat convection, we need additional boundary 
conditions. The first assumption is that energy diffusion 
and pressure transport cancel each other (c3=0). The 
second assumption is that the ratio between energy 
dissipation 7t  and turbulence production 3 4at t+  is fixed: 
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This approach is based on the bulk flux Richardson 
number T

fR , which is defined as the ratio of energy 
recovery due to entrainment and the energy production. 
It is empirically known to be 0.045T

fR ≈  for subcritical 
flows and 0.18T

fR ≈  for supercritical ones (Bo 
Pedersen, 1980). Dense-gas dispersion usually falls in 
the latter category. A solution is only possible with a 
slightly modified velocity scale ( )2 33 3 3

* 5 *e u c w= +  and 

when the following relation is obeyed: 
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It happens that this is almost true, e.g. if the weak 
convection limit is altered from λ3≈0.37 to λ3≈0.34. The 
general solution (Nielsen, 1998) is  
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and by insertion of 0.18T

fR =  and the values in Table 2 
we obtain: 
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This function is easy to match with alternative data and 
the limit of passive dispersion 1λ  could be 
parameterised by the ambient stability.   

5. ESTIMATES OF IN-PLUME TURBULENCE 

 
The heat transfer from the ground to a cold dense gas 

cloud varies from free to forced convection depending 
on the velocity and temperature difference between 
cloud and surface. Jensen (1981) proposed an analogy 
with the atmospheric surface layer and applied local 
Monin-Obukhov scaling within the gas layer and wrote 
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where κ  is the von Karman constant, 0z is the surface 
roughness, and the diabatic correction functions mψ  
and hψ  (e.g. Paulson 1970) depend on the stability 
parameter z L . The heat flux  
 

p hc c u Tϕ ρ= ∆   (12) 
 
is parameterised by the exchange coefficient (Brutsaert, 
1982) 
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Elimination of *u  and *θ  from the definition of Monin-
Obukhov length L  yields an equation for the stability 
parameter  
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where the convection Richardson is defined by 
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Jensen (1981) evaluated the heat convection 
Richardson number for the characteristic layer height 
z h≈ , solved (14) for the stability parameter z L  and 
found the in-plume turbulence scales ( )* *,u w  by 
Equations (2,12,13). This approach will fail for the 
combination of a high convection Richardson number 
and a low ratio between layer height and surface 



roughness. In these extreme situations we may have to 
use the parametrisation of Zeman (1982) who proposed  
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where α  is the thermal molecular diffusivity [ 2 -1m s ] and 

dc is a friction coefficient set to 0.08. 
 
6. CONCLUSION 
 

We present a simple entrainment function eu e  

( ) 10.25 3.3 Ri −= +  using ( )2 33 3
* *0.1e u w= + . This is 

calibrated by reference data for the cases of free 
convection, forced convection, stratified shear flow and 
passive dispersion. The remaining task is to predict the 
turbulence conditions inside the gas plume. In the lack 
of accurate field date we suggest an analogy with the 
atmospheric surface layer using a local Monin-Obukhov 
scaling for the gas layer. 
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