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1. INTRODUCTION∗∗∗∗ 
 
State-of-the-art sonic anemometers deduce the 

instantaneous wind vector and sound virtual 
temperature by transit times of sound pulses, travelling 
back and forth in three measurement paths. To 
eliminate cross-talk effects, the pulse firings are 
sequential and, therefore, the instrument response is 
distorted when the frequency of turbulent perturbations 
approach that of the measurement cycle. Furthermore, 
the temperature response is distorted by the sound-path 
bending caused by the wind component perpendicular 
to the individual measurement path. Since pulse-timing 
distortions increase with frequency it is necessary to 
consider compensating effects of volumetric averaging 
along the measurement paths, together with the block-
averaging and aliasing effects of the discrete sample 
strategy. The co-spectral response of all signals is 
modelled for the omni-directional Solent R3 
anemometer taking its special instrument geometry and 
pulse-firing rhythm into account. The pulse-firing 
sequence implies that the response depends on the 
instrument orientation relative to the wind direction. The 
temperature and heat-flux responses are improved 
relative to those of the preceding R2  

 
2. THE SOLENT R3 ANEMOMETER  
 

The omni-directional Solent R3 anemometer has 
three intersecting measurement paths arranged with 
120° azimuth separation and an inclination angle α= 
45°. Each measurement cycle involves six sound pulse 
firings and it is convenient to express their timing 
relative to the average firing time, i.e. as 

5 , 3 , , , 3 , 5τ τ τ τ τ τ− − −  with =0.72τ ms. Upward firings 
occur at times (4 1)j τ− and downward firings occur at 
times (4 1)j τ+ , with the measurement path index 

1,0, 1j = − + . Unit vectors in the directions of the 
individual paths are defined by  
 

( ) ( )cos 2 3 cos , sin 2 3 cos ,sinj j jπ α π α α = − t         (1) 

 
The projection of the ambient wind vector su on 
individual measurement paths is ⋅p,j j s ju = t (u t )  
expressed in an orthogonal coordinate system aligned 
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after the instrument, and wind components normal to 
measurement paths are n,j s p, ju = u - u . The velocities 
detected by individual measurement paths are 

1 0 1( , , )u u u− + = sTu  and the wind vector is reconstructed 
by 1 0 1( , , )s u u u− += ⋅u S , where the response matrix T is 
composed by measurement-path unit vectors and the 
back-projection matrix S is the inverse of this. For later 
use, we define sj as the column vectors of S. In order to 
relate response characteristics to boundary-layer theory, 
we express the wind vector in the instrument coordinate 
system s =u R u  by the wind-aligned vector 

( ), ,u u v w′ ′ ′= +u  and the rotation matrix R . Taking the 
average of measurements by individual transducer pairs 
minimizes temperature distortion by probe deformation. 
 
3. RESPONSE MODEL 
 
3.1  Effects of pulse delays 
 

Larsen et al. (1993) approximated the velocity and 
temperature responses of a single sonic anemometer 
path by  
 

( ) ( ) ( )
( ) ( ) ( )

n
p,s p, p, n, n,

n
p, p, n, n,

1 1 1
2 2 2

1
2 2 2

uu T T u u u u
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ua aT T T u u u u
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′ ′ ′ ′ ′ ′ ′= − + + − −

′ ′ ′ ′ ′ ′ ′= + + − − +
       (2) 

 
where T is temperature, c is sound velocity, and pu  and 

nu denotes wind components in parallel and normal to 
the measurement path. Mean values and perturbations 
are marked with overbars and primes, arrows ↑ and ↓ 
and refer to the upward and downward pulse firings, 
index s refers to sonic response, and the parameter is 
defined by -12 1.8 Ksma T c≡ ≈ . Temperature distortion 
by sound path bending by cross wind (Kaimal and 
Gaynor 1991) is included in this formula. The response 
characteristics were modelled by Fourier expansion of 
all variables x in (2) taking time delays into account by  
 

( ) ( ) ( ) ( )
1 2

i t i t
x xx dZ e x dZ eω τ ω τω ω− += =∫ ∫                      (3) 

 
where the time lag between pulses is 2τ . The response 
expressions were translated from exponential to 
trigonometric functions and response spectra were 
calculated by insertion of theoretical power and cross 
spectra. Applying this method for the Solent R3 system 
we must rotate the wind vector to the instrument 



coordinate system and split it into components parallel 
and normal to individual measurement paths. The 
temperature signal becomes: 
 

( )T,SdZ ω =  (4) 
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Here, we define a velocity perturbation vector 

, ,u v wdZ dZ dZ=   udZ  and the rotated mean flow 

direction 1,0,0= ⋅   1r R is the first column of the rotation 

matrix R. The filters ( )T p n, ,λ λ λ  account for spatial line 

averaging of temperature and velocity perturbations in 
parallel and normal to individual measurements paths, 
see below.  

Evaluating velocity responses, we recall that 
velocity signals from individual measurement paths 
contribute with the velocity components js , and that the 
combined velocity must be rotated back into the mean 
flow direction.  
 

( )ω =U,SdZ    (5) 
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We now introduce an overall perturbation vector 

, , ,u v w TdZ dZ dZ dZ  dZ =  and formally raise the 
dimension of the rotation matrix to include the 
temperature signal. It is then possible to organise the 
response relations as  
 

( ) ( ) ( )( ) ( )u cω ωτ ωτ ω⋅-1
S 1dZ = R A - B r RdZ

              (6)         
 

 
where the matrix A and third-order tensor B depend on 
instrument geometry and spatial averaging.  

So far we have ignored the on-line correction for 
temperature distortion by crosswind velocities. The 

instrument computer corrects each temperature sample 
by the following formula (Gill 1997)  
 

( )2 2 23 1
sc s 4 s s 2 s2

a uT T u v w
c
 = + + +
 

                                  (7) 

 
which is perfectly correct when firing delays are ignored 
and equivalent to the correction of Schotanus et al 
(1983). We linearise the corrected temperature to  
 

( )3 3 1
sc s 4 11 s 4 21 s 2 31T T au c r u r v r w′ ′ ′ ′ ′= + + +                         (8) 

 
Here, we express mean velocity components by the 
wind speed u and elements of the first column in the 
rotation matrix ( )11 21 31, ,r r r = 1r .  We can express this 
crosswind-temperature correction as 
 

( ) ( ) ( )( ) ( )u cω ωτ ωτ ω⋅-1
SC 1dZ = R C A - B r R dZ           (9) 

 
with a correction matrix defined by  
 

3
1 4 11
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The spectral matrix is ( ) ( ) ( )*χ ω ω ω= ⊗dZ dZ , where 

the suffix * denotes complex conjugation and the 
operator ⊗  denotes the outer product. By insertion we 
see that the instruments spectral response relates to the 
true spectral matrix by:  
 

( ) ( ) †χ ω χ ω⋅ ⋅SC = D D  (11) 
 
Here, the translation matrix is defined by 

( ) ( )( )u cωτ ωτ ⋅-1
1D = R C A - B r R  and †  denotes its 

Hermitian conjugate.  
The predecessor of the Solent R3 anemometer was 

the R2 model, which has a similar geometry. The R2 
temperature signal was, however, exclusively based on 
the first measurement path. The main difference in the 
response analysis is that only the leading term of each 
sum in the temperature response (4) is included and we 
drop the over-all factor 1/3. The influence matrices R2A  
and R2B  only differ for elements to be multiplied by the 
last part of the disturbance vector dZ =  

, , ,u v w TdZ dZ dZ dZ   . The R2 temperature distortion by 
crosswind velocity might have been eliminated by an 
on-line correction 
 

SC,R2 S,R2

2 2 2 3 351 7 1 1
2 8 8 2 4 2 2

T T

a c u v w uv uw vw

=

 + + + + + − 

      (12) 

 



similar to that of the R3 anemometer (7). This feature 
was, however, not available in the R2 version and the 
spectral response is evaluated without crosswind-
temperature correction. 
 

( ) ( )( )u cωτ ωτ ⋅-1
R2 R2 R2 1D = R A - B r R  (13) 

 
3.2  Spatial averaging 
 

Spatial variations are modelled by the spectral 
tensor ( )1 2 3, ,k k kΦ . Variations are considered as 'frozen 

turbulence', 12f k uπ= , and the familiar 1-D temporal 
spectra are found by integration over wave numbers 
representing lateral and vertical variations. The line-
averaging effect is estimated by a 'pseudo-transfer' 
function, defined as the ratio of spectral response and 
the ideal spectrum.  
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The weight function is defined by ( ) ( ) 22 2sinc sinx x x≡  
where the argument is the scalar product of the wave-
number vector ( )1 2 3, ,k k k=k  and path-direction unit 
vector t multiplied by half the measurement-path length 
D/2. Fortunately, the measurement paths of the R3 
anemometer cross each other at the centre, so we do 
not have to consider path displacement, as in the 
treatment of the Kaijo Denki A-type sonic by Kaimal et 
al. (1968).  

The pseudo-transfer function depends on the signal 
component and measurement-path direction. The 
spectral tensor is not accurately known, but it is argued 
that line averaging over short measurement paths is 
only significant well into the inertial sub-range, where 
simple isotropic models suffice. Such models are 
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where 2 2 2 2

1 2 3k k k k= + +  and ,i jδ  is Kronecker’s delta. In 
general, the measurement path will have an oblique 
angle  relative to the wind direction, 1cosβ −= ⋅j 1t r . The 

temperature transfer functions for this condition is  
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where integration over vertical wave numbers have to 
be numerical. Similarly, for velocity perturbations 
parallel to the measurement paths 
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and crosswind to the measurement path 
 

( ), 1H ,u n k β =  (18) 
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Figure 1 shows three types of pseudo-transfer 

functions for the minimum, mean and maximum angles 
between measurement paths and wind vectors in the 
horizontal plane together with the simple ( )2 1

2sinc kD  
filter. The functions are not very different from the 
simple case, except when the measurement path is 
nearly perpendicular to the wind.  

Turbulent fluxes do not exist in isotropic turbulence. 
As an approximation Larsen et al. (1993) estimated the 
pseudo-transfer function for mixed relations by the 
product of transfer functions estimated by isotropic 
fields. We extend this approximation to transfer function 
for cross-spectra signals measured by different paths:  
 

( ) ( ) ( )XY 1 2 X 1 Y 2H , , H , H ,k k kβ β β β≈         (19) 

 
This assumption allows us to estimate the correction 
factors used in the response equations (4) and (5) 
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3.3  Digital sampling 
 

Each measurement cycle of the Solent R3 
anemometer takes =10 msτ∆  equal to a sample 
frequency of 100 Hz and the instrument output is the 
block average of an optional number of samples N 
ranging from 1 to 250.  We model the combined effect of 
this digital sampling as  
 



( ) ( )ω τω ω π τ
ω τ

+∞

=−∞

 ∆= + ∆ ∆ 
∑

2
sin 2 2

sin 2X x
m

NS S m
N

  (21) 

 
where the sum includes alias contributions and the 
factor in front is the effect of averaging a sequence of N 
samples. We assume that 5N = equal to an output rate 
of 20 Hz is a popular choice.   

 
4. EXAMPLE 
 
Following Larsen et al. (1993) we model the spectral 
matrix ( )χ ω  by conventional surface-layer scaling 
(Kaimal, 1972) and examine the instrument response by 
Eqn. (11). The temperature signal is the most sensitive 
one, in particular for near-neutral conditions, where the 
true spectrum may be arbitrarily small compared to the 
velocity disturbances. This worst-case situation is 
shown in Figure 2. The directional dependence 
illustrated by the shaded areas is both related to 
variable line-averaging effect and to the shift of the wind 
vector relative to the pulse-firing pattern. The pulse-
delay effect adds a significant high-frequency 
component to the temperature signal, which is 
moderated by the line averaging effect, as expected. 
Furthermore, the figure shows how aliasing 
contaminates the 1-10 Hz range by the false high-
frequency response. This end result is also shown for 
the earlier R2 model. The R2 anemometer has no 
temperature correction and its temperature response is 
biased at all frequencies. The spectrum sampled by the 
R2 model follows the ideal slope to higher frequencies. 
Not knowing the true spectrum, the casual user might 
not realize that the R3 measurements are more 
accurate. Figure 3 shows that the heat-flux responses 
for the same test case are much better measured by the 
R3 anemometer. 
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Figure 1 Pseudo-transfer functions for along-path 
velocity (solid line), temperature (dashed line), and 
cross-path velocity (dotted line) shown for various 
angles between wind and measurement path, β. 
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Figure 2 Temperature power spectrum for weak wind 
and near-neutral conditions. 
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Figure 3 Heat flux spectrum for weak wind and near-
neutral conditions. 
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