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1 INTRODUCTION

In traditional simulations of flow over complex terrain with
unresolved surface features, the effect of the small-scale
geometry is often parameterized using a drag coefficient
determined in an ad hoc fashion. In these simulations,
there is usually a large separation of scales between the
resolved roughness and the small-scale surface rough-
ness. One example of this is turbulent flow over a “flat”
surface (i.e. resolved geometry is a flat wall) with surface
roughness at a much smaller scale, which can be parame-
terized with a roughness length or drag coefficient. Due to
the separation of scales, the drag from the small scales is
less likely to depend on the details of the flow in question
and hence can be successfully parameterized in this man-
ner. However in situations where the surface possesses a
wide range of scales, with significant unresolved features,
the drag from the unresolved scales may depend on the
particular flow and shape of the geometry under consid-
eration. As a result, simulations using ad hoc parameter-
izations of the large unresolved surface features (i.e. fea-
tures just smaller than the minimum resolved scale) are
less likely to give accurate results. This raises the question
of whether information from the resolved surface scales
may be used to obtain accurate values of the drag coeffi-
cient, especially in geometries with some degree of scale-
similarity. This would ensure that the drag coefficient used
in a simulation is matched to the geometry and flow under
consideration. The problem is similar to that in large-eddy
simulation (LES) where traditionally the values for model
coefficients for a given flow are prescribed. The dynamic
framework of Germano et al. (1991) allows LES model co-
efficients to be determined using information contained in
the smallest resolved flow scales, and has been used suc-
cessfully in applications of LES. In this presentation, an
analogous formulation for dynamic determination of drag
coefficients is outlined, and results from preliminary 2-D a
priori tests are given.

2 FORMULATION

For the sake of brevity, only a brief description of the dy-
namic formulation is given here. Similar to the dynamic
model of Germano et al. (1991), the present formulation
relies on test filtering (i.e. explicitly filtering the resolved
scales) to extract information from the smallest resolved
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surface scales. Hence, an important part of a dynamic
formulation for drag coefficients involves defining filter op-
erations that act on surface geometry. Another key compo-
nent of the formulation is a Germano identity that relates
the force that the fluid exerts on the complex surface when
it is considered at different scales. The force F ∆ that the
fluid exerts on the surface at scale ∆ is modeled as

F ∆ = ∆2

(
σ̃ · ñ +

1

2
ρCD(Re)|U t,∆|U t,∆

)
, (1)

where σ̃ is the resolved stress tensor, ñ is the resolved
surface normal, ρ is the fluid density, CD(Re) is a drag
coefficient (depending on Reynolds number), and U t,∆ is
a tangential velocity vector at scale ∆. This force model
contains a resolved-scale contribution and the effect of the
unresolved geometry scales is taken into account through
the drag coefficient. For simplicity, this particular model
only includes a drag force contribution from the unresolved
geometry and neglects any lift force contribution from the
unresolved scales. The dynamic formulation allows either
a low Reynolds number scaling (CD ∝ Re−1) or a high
Reynolds number (inertial) scaling (CD is Re independent)
for the drag coefficient, but the type of scaling must be
specified. A requirement for the dynamic model is that
the surface display some degree of self-similarity at the
smallest resolved scales.

3 SIMULATIONS AND REPRESENTA-
TION OF COMPLEX GEOMETRY

Due to the above requirement that the surface display self-
similarity, an ideal surface to test the above formulation is
a fractal surface. In this study, two-dimensional simula-
tions of flow over a Koch-curve geometry are performed
on a regular Cartesian grid. The flow is periodic in the hor-
izontal direction, and stress-free boundary conditions are
applied at the top of the domain. In the a priori tests, no-
slip boundary conditions are applied on the Koch-curve.
Current simulations are limited to Re ≈ 500, based on the
domain height and maximum velocity, and are performed
without a turbulence model. Higher Reynolds number sim-
ulations using a simple turbulence model are planned. The
domain with streamlines from one of the simulations used
in the a priori tests is shown in figure 1. The geometry is
represented on the Cartesian grid through the use of body
forces, in a similar approach to that used by Mohd-Yusof
(1997). To accurately represent the complex, no-slip sur-
face, different interpolation schemes are tried ranging from



Figure 1: Geometry and streamlines from a simula-
tion used in an a priori test (Re ≈ 500).

no interpolation to a combination of linear and bilinear in-
terpolation (Kim et al., 2001).

4 PRELIMINARY RESULTS:
A PRIORI TESTS

In a priori tests, simulations are performed over detailed
Koch-curve surfaces and can be thought of as direct nu-
merical simulations, in which all relevant surface scales
are resolved. In these cases, the Koch-curve shape con-
sists of 1024 surfaces each of length `Koch = 1/243 (nor-
malized by the height of the domain). To perform the a pri-
ori tests, the relevant quantities from the unfiltered surface
are filtered and then used to calculate the dynamic drag
coefficient. For comparison, an “exact” value of the drag
coefficient can be found by minimizing the squared error in
the model expression for the surface force (equation 1).

In the low Reynolds number tests (Re ≈ 500) with an in-
ertial scaling of the drag coefficient, it is found that there is
high variability in the accuracy of the dynamic formulation,
depending on the resolved scale ∆. When ∆ = 9` Koch, the
dynamic value of the drag coefficient differs from the exact
value by about 10 %. However, when ∆ = 3`Koch there
is a large discrepancy of 90 %, probably due to the fact
that at this scale, the local Reynolds number is O(1) so
that the assumption that the drag coefficient follows an in-
ertial scaling is not justified. When a low Reynolds number
scaling is used (CD ∝ Re−1), the error in the drag coeffi-
cient drops to 14 % at scale ∆ = 3`Koch. We note that the
higher Reynolds number inertial scaling is of primary in-
terest and here, the low Reynolds number scaling is used
only to check the dynamic drag coefficient formulation. In
the same low Reynolds number tests with ∆ = 27`Koch

(where the local Reynolds number is O(100)), large errors
are obtained (about 140 %) and the dynamic coefficient
becomes negative when an inertial scaling for the drag co-

efficient is used. The cause for this problem lies in the
fact that the force model used assumes that the velocity
vector near the surface points down the pressure gradient.
However, in this complex flow it is possible that this veloc-
ity actually points up the local pressure gradient, causing a
negative contribution to dynamic drag coefficient. This can
occur in high shear situations where viscous stress can
cause the flow to move up the pressure gradient, and also
in the neighborhood of highly curved streamlines. These
results show that higher Reynolds number a priori tests
are desirable, to ensure an inertial scaling of the drag co-
efficient and to ensure that viscous stresses in the flow are
less important (reducing the likelihood of negative contri-
butions to the coefficient for the present model). In ad-
dition to these preliminary priori tests, a posteriori tests
performed with an imposed dynamic drag coefficient are
needed to quantify the accuracy of this dynamic model in
applications.

5 CONCLUSION

A dynamic drag law for scale-similar surfaces that takes
unresolved geometry into account in the calculation of the
drag coefficient has been formulated. The formulation
gives reasonable results (10 % error) at certain scales in
low Reynolds number a priori tests, although at different
scales larger errors are obtained. Higher Reynolds num-
ber tests required to observe the dynamic drag coefficient
behavior in an inertial scaling regime need to be under-
taken.
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