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1. INTRODUCTION

In the last decades it has been recognized that
the very high Rayleigh number convective bound-
ary layer (CBL) has more complex nature than
might be reckoned. Besides the fully organized
component naturally considered as the mean flow
and the chaotic small-scale turbulent fluctua-
tions, one more type of motion has been discov-
ered, namely, long-lived large-scale structures,
which are neither turbulent nor deterministic.
These semi-organized structures considerably en-
hance the vertical transports and render them
essentially non-local in nature. In the atmo-
spheric shear-free convection, the structures rep-
resent three-dimensional Benard-type cells com-
posed of narrow uprising plumes and wide down-
draughts. They embrace the entire convective
boundary layer (∼ 2 km in height) and include
pronounced large-scale (∼ 5 km in diameter) con-
vergence flow patterns close to the surface (see,
e.g., Atkinson and Wu Zhang, 1996; Etling and
Brown, 1993, and references therein). In sheared
convection, the structures represent CBL-scale
rolls stretched along the mean wind. Life-times
of the semi-organized structures are much larger
than the turbulent time scales. Thus, these
structures can be treated as comparatively sta-
ble, quasi-stationary motions, playing the same
role with respect to small-scale turbulence as the
mean flow.

In a laboratory turbulent convection several
organized features of motion, such as plumes,
jets, and the large-scale circulation, are known
to exist. The experimentally observed large-scale

circulation in the closed box with a heated bot-
tom wall (the Rayleigh-Benard apparatus) is of-
ten called the ”wind” (see, e.g., Niemela et al.,
2001, and references therein). There are several
unsolved theoretical questions concerning these
flows, e.g., how do they arise, and what are their
characteristics and dynamics.

In spite of a number of studies, the nature
of large-scale semi-organized structures is poorly
understood. The Rayleigh numbers, Ra, based
on the molecular transport coefficients are very
large (of the order of 1011 − 1013). This cor-
responds to fully developed turbulent convec-
tion in atmospheric and laboratory flows. At
the same time the effective Rayleigh numbers,
Ra(eff), based on the turbulent transport coeffi-
cients are not high, e.g., Ra(eff) ∼ Ra/(RePe),
where Re and Pe are the Reynolds and Peclet
numbers, respectively. They are less than the
critical Rayleigh numbers required for the ex-
citation of large-scale convection. Hence the
emergence of large-scale convective flows (which
are observed in the atmospheric and laboratory
flows) seems puzzling.

The main goal of this study is to suggest a
mechanism for excitation of large-scale circula-
tions (large-scale convection). We analyzed rel-
evance of the obtained results to turbulent con-
vection in the atmosphere and laboratory exper-
iments.
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2. THE CONCEPT OF CONVECTIVE
WIND

The proposed ”convective-wind theory” of
turbulent sheared convection distinguishes be-
tween the ”true turbulence”, corresponding to
the small-scale part of the spectrum, and the
”convective wind” comprised of large-scale semi-
organized motions caused by an inverse energy
cascade through large-scale instabilities. The
true turbulence in its turn consists of the two
parts: the familiar ”Kolmogorov-cascade turbu-
lence” and an essentially non-isotropic ”tangling
turbulence” caused by tangling of the mean-
velocity gradients with the Kolmogorov-type tur-
bulence. These two types of turbulent motions
overlap in the maximum-scale part of the spec-
trum. The tangling turbulence does not exhibit
any direct energy cascade, and its spectrum is
steeper than the Kolmogorov-turbulence spec-
trum.

In this study the convective-wind motions were
investigated using perturbation analysis. It was
demonstrated that their typical length and time
scales are much larger than the true-turbulence
scales. This justifies separate treatment of the
above two types of motions.

It is proposed that the term turbulence (or true
turbulence) be kept only for the Kolmogorov +
tangling turbulence part of the spectrum. This
concept implies that the convective wind (as well
as semi-organized motions in other very high
Reynolds number flows) should not be confused
with the true turbulence.

In the light of this observation, further at-
tempts to develop an overall turbulence closure
covering the whole spectrum of non-regular mo-
tions do not look promising. Indeed, traditional
math-statistical tools are adequate as applied to
the true turbulence but become a Procrustean
bad for semi-organized motions, such as convec-
tive wind. This factual inconsistency explains
why modern convective-turbulence closures, de-
spite their enormous complexity, are not suf-
ficiently advanced to reproduce the transport
properties of convective flows over a range of
regimes.

In accordance with the convective-wind con-
cept, the three-fold approach is proposed instead
of the traditional, overall closures. It includes:
(i). Application of the Kolmogorov closure to the

true turbulence and the Orszag (relaxation) clo-
sure to the tangling turbulence; (ii). Using these
closures, analytical investigation of the basic fea-
tures and scales of convective-wind structures.
(iii). Numerical modelling of complex flows with
due regard to appropriate resolution (or param-
eterization) of the above structures.

This clearly reminds large-eddy simulation
(LES) techniques, in which sub-filter scale clo-
sures are of the Kolmogorov type, whereas semi-
organized motions are resolved. The proposed
approach offers scope for providing LES with bet-
ter grounded turbulent transport coefficients and
additional tools, such as a priori knowledge about
the basic features of semi-organized structures,
and physical grounds for the optimal choice of
the filter scale.

An interesting prospect is to attempt to pa-
rameterize the transport properties of the struc-
tures. This would lead to flux-calculation
schemes consisted of advanced closures for the
true turbulence and appropriate parameteriza-
tions for the dominant type of structures.

First results from the proposed theory demon-
strate a qualitative agreement with the known
unexplained observations. Examples are: (a) the
turbulent heat conductivity increases with the
decrease of shear and the turbulent Prandtl num-
ber decreases by a factor four with decrease of
shear; (b) in the presence of the mean shear, the
horizontal heat flux is oriented against the regu-
lar mean flow.

The developed theory predicts the convective
wind instability in a shear-free turbulent convec-
tion. This instability causes formation of large-
scale semi-organized fluid motions (convective
wind) in the form of cells. Spatial characteris-
tics of these motions, such as the minimum size
of the growing perturbations and the size of per-
turbations with the maximum growth rate, are
determined.

This study predicts also the existence of the
convective-shear instability in the sheared tur-
bulent convection. This instability causes forma-
tion of large-scale semi-organized fluid motions
in the form of rolls (sometimes visualized as the
boundary-layer cloud streets). These motions
can exist in the form of generated convective-
shear waves, which have a nonzero hydrodynamic
helicity. Increase of shear promotes excitation of
the convective-shear instability.
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3. TURBULENT FLUX OF ENTROPY

Now we discuss in a more detail the mecha-
nism of formation of semi-organized structures.
Traditional theoretical models of the boundary-
layer turbulence, such as the Kolmogorov-type
closures and similarity theories (e.g., the Monin-
Obukhov surface-layer similarity theory) imply
two assumptions: (i) Turbulent flows can be de-
composed into two components of principally dif-
ferent nature: fully organized (mean-flow) and
fully turbulent flows. (ii) Turbulent fluxes are
uniquely determined by the local mean gradi-
ents. For example, the turbulent flux of entropy
is given by

〈su〉 = −κT ∇S̄ , (1)

where κT is the turbulent thermal conductivity,
S̄ is the mean entropy, u and s are fluctuations
of the velocity and entropy.

However, the mean velocity gradients can af-
fect the turbulent flux of entropy. The reason is
that additional essentially non-isotropic velocity
fluctuations can be generated by tangling of the
mean-velocity gradients with the Kolmogorov-
type turbulence. The source of energy of this
”tangling turbulence” is the energy of the Kol-
mogorov turbulence. We showed that the tan-
gling turbulence can cause formation of semi-
organized structures due to excitation of large-
scale instability. This process is nothing but the
inverse energy cascade.

The tangling turbulence was introduced by
Wheelon and Batchelor for a passive scalar and
by Golitsin and Moffatt for a passive vector
(magnetic field). Anisotropic fluctuations of a
passive scalar (e.g., the number density of parti-
cles or temperature) are generated by tangling
of gradients of the mean passive scalar field
with random velocity field. Similarly, anisotropic
magnetic fluctuations are excited by tangling of
the mean magnetic field with the velocity fluctua-
tions. The Reynolds stresses in a shear flow is an-
other example of a tangling turbulence. Indeed,
they are strongly anisotropic in the presence of
shear and have a steeper spectrum (∝ k−7/3)
than a Kolmogorov turbulence. The tangling tur-
bulence contributes to the turbulent flux of en-
tropy. Calculations based on the Navier-Stokes
equations, the entropy evolution equation formu-
lated in the Boussinesq approximation and em-

ploying the Orszag (relaxation) closure hypothe-
sis yield the following expression for the turbulent
flux of entropy Φ ≡ 〈su〉:

Φ = Φ∗ + (τ0/5)[−5α(∇ · Ū⊥)Φ∗
‖

+(α + 3/2)(ω̄×Φ∗
‖
) + 3(ω̄‖×Φ∗)] , (2)

Here, τ0 is the correlation time of the Kolmogorov
turbulence corresponding to the maximum scale
of turbulent motions, ω̄ = ∇×Ū is the mean
vorticity, the mean velocity vector is presented
as Ū = Ū⊥ + Ūze, and Φ∗

‖
= Φ∗

ze, ω̄‖ = ω̄ze,

Φ∗ = −κT ∇S̄ − τ0Φ∗
z(dŪ(0)(z)/dz), Ū(0)(z) is

the imposed horizontal large-scale flow velocity
(e.g., a wind velocity), e is the vertical unit vec-
tor and α is the degree of thermal anisotropy
of the background turbulent convection (without
mean-velocity gradients). In the isotropic case,
α = 1. When −9/2 < α < 1, thermal structures
have the form of columns or thermal jets, and
when 1 < α < 3, they have the ”pancake” form.
The last three terms on the right hand side of
Eq. (2), depending on the mean-velocity gradi-
ents and caused by the tangling turbulence, can
result in the excitation of large-scale instability
and formation of semi-organized structures (con-
vective wind).

The turbulent flux of entropy can be also ob-
tained from simple symmetry reasoning. In-
deed, 〈su〉 = Φ∗

i + βijk∇jŪk, where βijk is an
arbitrary true tensor. Then using the identity
∇jŪi = (δŪ)ij − (1/2)εijk ω̄k, the turbulent flux
of entropy becomes

〈sui〉 = Φ∗
i + ηijω̄j + (ω̄×σ)i + µijk(δŪ)jk , (3)

where (δŪ)ij = (∇iŪj +∇jŪi)/2 and εijk is the
fully antisymmetric Levi-Civita tensor. Clearly,
Φ∗ determines the contribution from the Kol-
mogorov turbulence, whereas the last three terms
describe the contribution of the tangling turbu-
lence. In Eq. (3), ηij is a symmetric pseudo-
tensor, σ is a true vector, µijk is a true tensor
symmetric in the last two indexes, Φ ≡ 〈su〉 and
Φ∗ are true vectors. These tensors and vectors
can be constructed using two vectors: Φ∗ and
the vertical unit vector e. Therefore ηij = 0, σ =
A1Φ∗ +A2Φ∗

ze, and µijk = A3Φ∗
zeijk +A4Φ∗

i ejk,
where Ak are the unknown coefficients and eijk =
eiejek. This yields the following expression of
the turbulent flux of entropy in a divergence-free
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mean velocity field:

Φ = Φ∗ − (A3 + A4)(∇ · Ū⊥)Φ∗
‖

+(A1 + A2)(ω̄×Φ∗
‖
) + A1(ω̄‖×Φ∗)

−A4(∇ · Ū⊥)Φ∗
⊥] . (4)

Equations (2) and (4) coincide if one sets A1 =
3τ0/5, A2 = (τ0/5)(α − 3/2), A3 = τ0α, and
A4 = 0.

4. MECHANISMS OF THE
LARGE-SCALE INSTABILITY

The mechanism of the convective wind insta-
bility, associated with the second term in the
expression for the turbulent flux of entropy [see
Eq. (2)], in the shear-free turbulent convection at
α > 0 is as follows. Perturbations of the vertical
velocity Ūz with ∂Ūz/∂z > 0 have negative diver-
gence of the horizontal velocity , i.e., div Ū⊥ < 0
(provided that div Ū ≈ 0). This results in the
vertical turbulent flux of entropy and causes an
increase of the mean entropy. On the other hand,
the increase of the the mean entropy increases
the buoyancy force and results in the increase
of the vertical velocity Ūz and excitation of the
large-scale instability. Similar phenomenon oc-
curs in the regions with ∂Ūz/∂z < 0 whereby
div Ū⊥ > 0. This causes a downward flux of the
entropy and the decrease of the mean entropy.
The latter enhances the downward flow and re-
sults in the instability which also causes forma-
tion of a large-scale semi-organized convective
wind structure. Thus, nonzero div Ū⊥ causes re-
distribution of the vertical turbulent flux of en-
tropy and formation of regions with large verti-
cal fluxes of entropy. Thereby the regions with
div Ū⊥ < 0 are separated by the regions with low
vertical flux of entropy with div Ū⊥ > 0. This re-
sults in a formation of a large-scale circulation of
the velocity field.

Another mechanism of the convective wind in-
stability is associated with the third term in the
expression (2) for the turbulent flux of entropy
when α < −3/2. This term describes the horizon-
tal flux of the mean entropy. The latter results
in increase (decrease) of the mean entropy in the
regions with upward (downward) fluid flows. On

the other hand, the increase of the mean entropy
results in the increase of the buoyancy force, the
mean vertical velocity Ūz and the mean vorticity
ω̄. This causes the large-scale convective wind
instability. The second term in the turbulent
flux of entropy at α < −3/2 causes a decrease of
the growth rate of the instability because, when
α < −3/2, it implies a downward turbulent flux
of entropy in the upward flow. This decreases
both, the mean entropy and the buoyancy force.
Note that, when α < −3/2, the thermal struc-
ture of the background turbulence has the form
of a thermal column.

The mechanism of the convective-shear insta-
bility associated with the last term in the ex-
pression (2) for the turbulent flux of entropy is
as follows. The vorticity perturbations generate
perturbations of entropy. Indeed, for two vor-
tices with opposite directions of the vorticity ω̄‖ ,
the turbulent flux of entropy is directed towards
the boundary between the vortices. The latter
increases the mean entropy between the vortices.
Such redistribution of the mean entropy causes
increase of the buoyancy force and formation of
upward flows between the vortices. Finally, the
vertical flows generate vorticity, etc. This results
in excitation of the instability and generation of
the convective-shear waves.
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