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1. INTRODUCTION
time scales. Examples of coherent structures are
quasi-streamwise vortices and hairpin vortices, but
not wall streaks that seem to have quasi-regular
(harmonic) spacing in the cross-wind direction and
indefinite length. Here the term ‘eddy’ is used as a
synonym for ‘coherent structure’. Figure 1 shows a
schematic coherent structure with the required
characteristics

For many years the turbulence spectra
obtained during the Kansas experiment (Kaimal et
al., 1972) have served as the standard results for
the atmospheric surface layer (ASL) over land
(e.g. Kaimal & Finnigan, 1994) and at sea, both in
the ASL above the water surface (Nicholls &
Readings, 1981) and in the benthic surface layer
over the sea bed (Lien & Sanford, 2000). Given
this wide acceptance, it is surprising that only their
inertial sub-ranges have been adequately
explained: by Kolmogorov theory. The ‘production’
regions of these spectra—at the peak
wavenumbers and smaller—await a full explanation.
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Uncertain foundations invite challenges.
Thus Hunt and co-workers (Hunt & Morrison, 2000;
Hunt & Carlotti, 2001; Carlotti et al., 2001) have
proposed that the spectra of streamwise (u) and
transverse (v) velocity follow a k-1 power law at the
spectral maximum, which is to say the spectra
plotted as k E   ij(k) really have broad, flat peaks
rather than rounded peaks. They also propose a
model that is consistent with this feature. Implicit
in their case is that the Kansas results are
unreliable.

Figure 1. A schematic eddy. Main features are
that an outline can be defined and its internal
structure is simple. This is illustrated here by
showing the vertical velocity not random but
organized into well-defined areas of updraft
and downdraft.

Here the Kansas results are accepted at
face value and the paper investigates what kind of
turbulence structure might underlie them.
Townsend’s ideas of attached and detached
structures, and of active and inactive components
of turbulence are used throughout (Townsend
1976). To simplify matters, discussion centres on
cases where inactive motions contribute little to
the spectra, so we deal principally with spectra
from neutral or near-neutral conditions.

Eddies may be attached or detached. The
distinction is that attached eddies extend down to
the ground while detached eddies do not. This
means that an attached eddy 'knows' where the
ground is, and its dynamic is influenced by
pressure reflection at the ground. Detached eddies
do not contact the ground and so respond only to
local conditions in the flow: Eddies of the inertial
subrange are detached.

2. COHERENT STRUCTURES

The first proposition is that the active parts
of spectra can be explained in terms of the
properties of a set of coherent structures. A
coherent structure is a simple, recognizable and
recurring pattern of motion that is localized in both
physical and wavenumber space. The word
coherent implies that it has a single dynamic, so
all of its parts share the same length, velocity and

This distinction is illustrated in Fig. 2 using,
as exemplar, the distribution of vertical velocity
squared (w2) integrated over a horizontal plane at
each height, z. The integrated variance
approaches zero at the ground for the attached
eddy, but somewhat above it for the detached
eddy. It also approaches zero at an upper height,
h, which defines the length scale of an attached
eddy.  Notice that it is the assumption of small
complexity that ensures that w approaches zero at
the ground.
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which is the superposition of the wavelet
transforms of the individual signals
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The wavelet spectrum for the sum of the signals is
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Expansion shows that this can be expressed as
the superposition of the individual spectra plus

product terms   2 f i
 

fj, i ≠ j whose effect is to

redistribute energy away from the positions and
scales of the individual eddies and towards the
positions and scales of eddy clusters. The product
terms are significant wherever the individual
wavelet transforms overlap with significant
amplitude.

Figure 2. Schematic of the height distribution of
the variance of vertical velocity in attached
and detached eddies. Attached and detached
eddies are distinguished by how their
variances approach zero at the ground.

The average spectrum for all eddies of
(normalized) height 1 is
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3. SMALL-WAVENUMBER ASYMPTOTES

Here we derive the asymptotic behaviour of
velocity spectra and cospectra in the ASL in
neutral conditions. We assume that the important
eddies are attached and statistically self-similar
when scaled on h and u* The derivation employs
wavelet transforms, as described by Perrier et al.
(1995) and Farge et al. (1996).

where L  is the length of the transect.
This equation is written for eddies of just one

size, but the summation could be extended over
any set of intersected eddies. If all intersected
eddies were to be included, it would describe the

complete wavelet spectrum,  Ez

 
k . Alternatively,

summation could be over all eddies whose
individual wavelet transforms are non-zero at r = 1.

This set of eddies is sufficient to evaluate  Ez

 
k  at

k = 2π, so

Consider a continuous wavelet transform of
the vertical velocity signal whi(x, z) as measured
along a horizontal transect at height z through a
single eddy of height h. Here x is distance along
the transect and all quantities are non-
dimensionalized using u* and h. The wavelet
transform of this signal is
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The contributing eddies would have heights spread
about 1. Eddies much taller than 1 would
contribute to the extent that they have internal
structure with scale ~1, and eddies shorter than 1
would contribute if they occur in groups of scale
~1. Eddies shorter than z do not contribute. If
eddies are neither very complex nor occur in very
large clusters then the main contributors to the
spectrum at k = 2π will be eddies with heights near
1. The range  may be a decade or more wide but
that is not important to the asymptotic behaviour
of the spectrum. All that is necessary is that there
exists a height z that is small compared to the
finest structural scales within eddies of heights ≥1.

where (..) is a wavelet function, compact in both
physical and wavenumber space. The wavelet
spectrum of this signal is
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where k0 is the peak wavenumber for the analysing
wavelet,
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 is the Fourier transform of .

Wavenumber, k,  is then related to wavelet
dilation, r, by k = 2π/r. If the transect passes
through n such eddies, the wavelet transform of
the set of intersected eddies is

The discussion above relates to the wavelet
spectrum while most published spectral results for
the ASL have been presented as Fourier spectra.
The two are related by
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properties of eddies as well as their individual
form, number and complexity will influence spectral
shapes. To prepare for this we must take another
look at the properties of active, attached eddies.

Importantly, wavelet and Fourier spectra have the
same slope when the Fourier spectrum follows a

power law Ez(k) α k-β, provided that the analysing

wavelet has at least (  - 1)/2 vanishing moments.
This is true of any wavelet for the k0 power law
considered here.

The first point to note is that these eddies
are attached, so they have no bulk vertical motion.
Therefore within each eddy the updrafts must
balance the downdrafts at each level. That is to
say, there will be a strong tendency for the w
signal along any horizontal transect through an
eddy to have a zero mean. This means that the
amplitude of the wavelet transform will decrease
rapidly with increasing dilation. This will reduce the
effect of any aggregation on the w spectrum by
reducing any contribution to the spectrum from

product terms,   f i
 

fj. Also, we do not expect whole

eddies to move laterally in the flow so we have
similar expectations for the v spectrum.

We are now ready to introduce some
physical assumptions and so deduce the
asymptotic behaviour of spectra at small
wavenumbers. Let the turbulence be statistically
homogeneous in the direction of the transect so
that Ez(2π) approaches a stable mean value for
large enough L. Let the turbulence also be
statistically self-similar under inner scaling so that
Ez(2π)  is independent of the choice of h. Then we
can write

The second defining characteristics of these
eddies is that they are active: they transfer
momentum. That is to say, their net effect is to
transfer faster air downwards towards the surface
and slower air upwards away from it. By their
nature, aggregates of similar-sized eddies will be
zones in the flow where streamwise velocity nearer
the ground (say z < h/2) is increased to above the
average at that level, and streamwise velocity
away from it (say z > h/2) decreased. We expect

transform product terms   f i
 

fj to be larger and to

shift spectral energy towards the larger scales of
the aggregates. The same is true of uw because
momentum is transported downwards in all eddies.
If aggregation is a factor, we expect to find u and
uw spectral peaks that are broader and at smaller
wavenumbers than those of the w and v spectra.

      Ez

 2 =g z

where g(z) is a universal function of height of the
kind shown in Fig. 2. This function may be
expanded into a Taylor series about z = 0, so for
z << 1 and with g(z) = 0 at the ground we have

       Ez

 2 = a z + O z
2

where a is a constant. Taking the limit gives

      Ez

 
2 = az : z << 1

The parameter h does not appear explicitly, so this
holds for any h. Detached eddies do not contribute
to the spectrum in this limit so this equation
defines the asymptotic behaviour of the whole
spectrum at kz  << 1. In dimensional form this
asymptote is The neutral spectra from Kansas do have

characteristics that can be attributed to eddy
aggregation. Unfortunately these spectra are not
unambiguous because Taylor's frozen turbulence
hypothesis must be used to convert them from
frequency to wavenumber representations. Also,
and at best, they provide along-wind transects
through the turbulent field, so they give no
information on cross-wind structure. The frozen
turbulence hypothesis is problematic because
eddy evolutionary and translational time scales are
about equal in surface layers. The evolutionary
time scale of an attached eddy is determined by
the shear that drives it, ∂u/∂z, evaluated at z ~ h/2
where its energy is greatest. Thus the evolutionary
time scale is ~ 0.2h/u* for a logarithmic wind
profile. The translational time scale of the same
eddy at z is ~h/u  at the same height. The ratio of
the two time scales is O(1), so we expect an eddy
to change form substantially while passing a fixed
observer.

      E k = a u *

2
z    for    kz << 1.

Before declaring that similar reasoning leads
to k0 asymptotes to the u, v spectra and the uw
cospectrum we must show that the fluctuations in
these variables go to zero at the ground, just as
for w (Fig. 2). For inviscid eddies we can not
invoke a non-slip boundary condition to give this
directly, but without viscosity changes in horizontal
velocity can only be transported to the ground by
vertical displacements of air, so w →0 at the

surface ensures that u, v, uw →0 also. The u, v
spectra and the uw cospectrum therefore also
approach k0 asymptotes as kz → 0. This agrees
with the neutral spectra observed at Kansas.

4.  POSITIONS OF SPECTRAL PEAKS

A notable feature of the neutral Kansas
spectra is that the positions of their various peaks
range over almost a decade in wavenumber. If the
same eddies generate all these spectra then eddy
characteristics apart from size distribution, which
is common to all, must help determine peak
positions. The wavenumber formalism presented
above invites us to suppose that aggregation

Data that circumvents both limitations can
be got by aircraft. Nicholls & Readings (1981)
report data from 11 aircraft runs made in the
surface layer (z <zi) and in near-neutral conditions
(- 0.15 < -z/L  < 0) over the sea. Their spectra are
not so well defined as those from Kansas and



there is evidence of some inactive turbulence, but
the positions of the active spectral peaks can be
read fairly reliably. These data can be put beside
the Kansas results as a cross-check on the use of
Taylor's hypothesis in the Kansas data and to
provide cross-wind transects. Peak positions are
shown in Table 1, recorded as peak wavelength
normalised by observation height.

5. CONCLUSIONS

This paper has presented a qualitative
account of some characteristics of the production
regions of velocity spectra and cospectra in the
ASL. It is based on the assumption that the
turbulence giving rise to these spectra is
dominated by active and attached coherent
structures. It has been argued that the spectra
can be interpreted as reflecting eddies that occur
in groups aligned with the wind. A structural model
with this characteristic is presented in a second
paper at this meeting.
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