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1. INTRODUCTION

The representation of the full depth of the atmo-
spheric boundary layer with a unique parameteri-
zation is a difficulty shared by all numerical models
from Large-eddy simulations (LES) to general cir-
culation models (GCM). LES separate the scales
of turbulence into two ranges, resolved and subgrid
scales. The resolved scales are assumed to contain
most of the energy of turbulent motion whilst on
subgrid scales, motions are the less energetic. This
approach works well far from regions of large gra-
dients. In the surface region, the energy is always
subgrid in all models from LES to GCMs. Past
studies (e.g. Mason and Thomson 1992; Sullivan
et al. 1994) have shown that the standard subgrid-
scale eddy viscosity approach leads to overpredict
the shear near the ground. To overcome this prob-
lem, the same authors have suggested modifications
to subgrid turbulence schemes. It is worthwhile to
notice that in all the approaches, the subgrid mixing
length is assumed to be the Prandtl mixing length
kz near the wall. Our goal (Redelsperger et al. 2001,
hereafter RMC2001) was to provide a physical ex-
planation of this problem and a solution suitable
for any models and reliable for inhomogeneous sur-
face conditions, complex topography and any verti-
cal stability conditions.

2. PROBLEM

2.1 Analytical view

To illustrate the problem, we will look at the be-
haviour of turbulence closures in considering the
one-dimensional, neutrally stratified case. Using
the equilibrium theory for an horizontally homoge-
neous turbulent flow, the turbulent kinetic energy
equation reduces to a balance of dissipation ¢ with
shear production :

e = —uww — (1)

where u, w are the components of wind along z and
z directions, respectively. In the common subgrid-
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scale eddy viscosity approach, the Reynolds stress
is modelled as:
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where E denotes the subgrid turbulent kinetic en-
ergy and Lx has the dimension of a length.

Dimensional arguments show that the dissipation

can be expressed as

E3/2
€= (3)

where £. has the dimension of a length.

In mesoscale and large-scale models, the lengths are
generally specified using empirical formulations or
by using the properties of the boundary layer in the
considered column of the atmosphere (e.g. Troen
and Mahrt 1986; Cuxart et al. 2000). In the surface
layer, the lengths are assumed to be the Prandtl
mixing length kz as generally in the LES. In LES
models, for the case of free turbulence (i.e. away
from the ground), spectral arguments can be used
to show that:

E}CICKL ; L:g:_ (4)

where L is the mesh size and
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where agz is the 73D” Kolmogorov constant. Mea-
surements give ag = 1.6 + 0.02 (Andreas 1987).
Using the equilibrium hypothesis (Eq. 1) together
with eqs 2 and 3, the subgrid turbulent kinetic en-
ergy and the Reynolds stress can be written as:
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On the other hand, the similarity theory gives
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where u,® = w'w'|sp, Observational data suggests
a ranges from 3.75 to 5.47.
So far, the equations for the subgrid scheme (6, 7)
and for the similarity laws (8, 9) have been derived
separately. Now imposing that both are valid in

the surface layer, the two following equations are
obtained:
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Lx=—kz ; L. =a2kz (10)
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Assuming that L = kz, it can be finally written:
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For o = 3.75 (5.47), we should have for the neutral
surface layer:

Celsge = 0.137 (0.078) (12)
Cklge = 0.516 (0.428) (13)

In fact, the constants in the subgrid turbulence
schemes are kept to their free-stream values (Eq.
5) as discussed above. Commonly used values of C.
and Cg are thus 0.7 and 0.066, respectively. In the
following, Cx and C. are used exclusively for these
free-stream values.

For cases where the primary balance is between
shear production and dissipation, these free-stream
values will imply in the surface layer a value of the
turbulent kinetic energy which is too small and a
vertical wind shear which is too large. It is impor-
tant to notice that the problem did not originate
from a bad choice of constants but from the use
in the surface layer of a subgrid scheme derived for
free-stream turbulence. Two main hypotheses, used
to derive the subgrid fluxes given by Eqgs. 6 and 7
from the full second order moment equations, seem
to fail in the surface layer: turbulence is isotropic
and the mesh size lays inside the inertial range of
the energy spectrum.

These remarks and the simple derivation above
gives a first simple explanation as to why the con-
stant Cx used in GCM and mesoscale models is
generally set up empirically to values larger than
0.066 (value as large as 0.5). For LES models, two
types of solutions to this problem have been pro-
posed. Firstly, larger values of constants C. |,z and
Ck|spe can be empirically specified. The drawback
is that these values are no longer adapted to free-
stream turbulence where they should be determined

as described above. Secondly, we can make the sub-
grid turbulence scheme more complex by introduc-
ing an anisotropic term which will become larger
near the surface. This last method has shown to
be efficient in improving the simulation of the sur-
face layer in LES. The present study seeks a more
general method, simple to implement in any models
and suitable for LES models as well as mesoscale
models and GCMs.

2.2 Spectral view

Away from the ground, one usually considers the
three-dimensional spectrum E(k), which represents
the turbulent kinetic energy, within the range of
wave numbers [k, k + dk]. Close to the ground,
one cannot consider the turbulence to be nearly
isotropic, and therefore one must be more care-
ful with the definitions. Writing u; for the fluc-
tuating velocity field, one can define R;;(r,z) =<
ui(z,y, 2)u;(z + r,y,2) > where < . > is the en-
semble average. Then, we denote by Ej;(k1,2)
the Fourier transform of R;; with respect to r and
E(kl, Z) = %(Ell(kla 2) —|— Ezz(kl, Z) + E33(/€1, Z))
Obviously, the turbulent kinetic energy at the
height = is given by [*°° E(ky, z)dk.

Some recent measurements have shown that these
velocity spectra change dramatically close to the
ground (e.g. Kim & Adrian 1999, Fuehrer & Friehe
1999) in the following way : for ky > 27/z, E11, Eag
and F33 behave in the same ways as in homogeneous
turbulence, but for 2m/A < k1 < 27/z, where Aisa
very large length scale (up to 12 times the boundary
layer height or the pipe radius in pipe experiments),
FE11 and E59 have a self similar behaviour in kl_l
while E33 is roughly flat (Fig. 1). This behaviour
is analysed from a theoretical point of view in Hunt
& Morrison (2000) and Hunt & Carlotti (2001).

This gives the following approximate behaviour:

B aze?Pk P ky > 2m )2
22/3 z
E(kq1) = 56—50362/3(2,02/3 %kl—l + 5] (14)
if 2m/z> k1 > 2n/A

with £(z) = u2/(kz). In homogeneous isotropic tur-
bulence, one simply has Fpom = f’—oa362/3k1_5/3 for
all k.

This form of the spectra produces a deficit of tur-
bulent kinetic energy for a given dissipation, as in-
dicated by the shaded area in Figure 2.

In the homogeneous isotropic turbulence case, on
can compute E},pm the subgrid kinetic energy by:

393 2213 (15
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Considering as the cut off wave number of the filter



is kg = m/L, one get

L. = Ci with . = w(i)w.
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In the case of turbulence blocked by the ground,
having a behaviour as shown in Fig. 1, a completely
rigourous argument is not possible any more, be-
cause there is no clear definition of what the large
eddies are. However, as it can be seen in Fig. 2, for
a given dissipation, there is a deficit of turbulent ki-
netic energy in the case of wall-bounded turbulence.
Define -

_ ka Ehom(kl)dkl (17)
‘ Jow Evi(ky)dky
where FEjy; is given by Equation 14. We claim that
=., which is defined with respect to the streamwise
direction, is a good measure of the global deficit
of turbulent kinetic energy : the turbulent kinetic
energy of the actual flow is equal to Epom (given by
Eq. 15) divided by E..
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It is easy to calculate =, and then using Eqs 18
to get :

E3/2 1,7 2 3/2
= -e—;Ag:—(—l Tt —(1—7. 1)
e=Ce s\ At 1=+
(19)
where 7, = % Evaluating Lx is even less easy

to do rigourously. Computations (see details in
RMC2001) lead to the following expressions:

E}c = CKAKZ (20)
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From these derivation, it can be viewed that Ag
and A. tend to large values when z/L — 0. Note
that the models where it is assumed that Lx/Ck =
C.L. = Min(L,kz), are discarded by the present
analysis. This corresponds to assuming that A, =
Ag = 0.4 close to the ground, which is far too small.
Our new values do not violate any physical con-
sideration, since the Karman constant arises from
consideration of a single length scale close to the
ground, which is not correct in choosing the sub-
grid model of LES, where the filter characteristic
length is relevant in all the domain of computation.
These calculations having been made using many
approximations, especially for the blocked case, we
can only be confident in the predicted values of A,
and Ag, up to a multiplicative coefficient of order
one. On a more theoretical point of view, the main

result of this spectral analysis is to show how the
energy deficit of blocked turbulence for a given dis-
sipation (this can be called ’anomalous dissipation’)
has a dramatic effect on the coefficients to be used
in models close to the ground, causing A, and Ag
to become large (Ag 2728 A, x (In 1/z)3/2).
3. SOLUTION
The previous spectral analysis based on the exis-
tence of a kl_l range in the energy spectrum indi-
cates that the subgrid scale lengths should be thus
taken larger than the commonly used Prandtl length
K z. An approach is here proposed to match the
usual subgrid turbulence scheme and the similar-
ity laws through the use of adequate expressions
of subgrid scale lengths near the surface. This ap-
proach is in agreement with the physical analysis
given above and contrasts with the empirical mod-
ification of Smagorinsky constant as suggested by
other authors.
The spectral calculations of Section 2.2 showed the
following behaviour of the length scales :
L.=A.z ; Lx = Ak z, (22)
where Lx = Ckg Lk and L, = %, Ck and C; being
kept equal to their free-stream values (Eq. 5).
Using the results of Section 2.1, the similarity
laws (Eqs. 8 and 9), are exactly derived from the
subgrid scheme by using the same value of constants
C. and Ck both in the surface layer and the free-
stress layer. The constants A. and Ak are then
given by:
A= a®Ce 5 Ag = o
€ € all? Ok
With @« = 3.75, A and Ag are equal to 2.03
and 3.13 respectively. For a = 4.63, we have
A = Ag = 2.79 (which is of the same order as the
estimates given from the spectral considerations in
Section 2.2). This value of « is close to the eval-
uation of various observational estimates and is in
particular close to the value of 4.75 given in Stull
(1988). Thus it seems reasonable to use this value

(23)

as the proposed solution leading to a single value of
subgrid scale length L = Agz = A.z near the sur-
face (this greatly simplifies the adaptation of pre-
existing models to our new formulation).

This solution can be easily generalized (RMC2001)
in considering stability functions. This solution is
very simple to implement in a model, as opposed
to other solutions previously proposed in the liter-
ature.

Stability functions for momentum, temperature and
turbulent kinetic energy as deduced from this new
scheme can be compared to the Monin-Obukov pro-
files as well as to the standard subgrid scheme with



subgrid scale lengths equal to xz or the mesh size
A as usual in LES models. Fig. 3 clearly show
the improvements brought by the new scheme over
the usual methods. The use of xz for subgrid scale
lengths leads to an overestimate of the values of the
vertical gradients of momentum and potential tem-
perature and the dissipation. The use of the mesh
size leads to better results for unstable conditions,
though still overestimating the momentum gradient
and the dissipation by a factor of around 2.

4. CONCLUSION

The present work provides a physical explanation
and a general solution suitable for any atmospheric
models, including inhomogeneous surface condi-
tions, complex topography and any vertical stabil-
ity. The energy deficit of blocked turbulence for a
given dissipation, has been shown to have a dra-
matic effect on the mixing and dissipation lengths
to be used in subgrid models close to the ground. To
take into account this ’anomalous dissipation’, mod-
ifications in the standard subgrid schemes derived
for free-stream turbulence have been proposed. In
particular, it is argued that subgrid scale lengths
equal to kz should not be used. These modifica-
tions are simple to implement in models and are
physically justified by recent measurements of spec-
tra close to the ground. This method is also easily
applicable to mesoscale and large-scale models.
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Figure 1: Sketch of the measured one-dimensional spec-
tra in atmosphere and pipe very close to the boundary
(cf. Hunt & Carlotti (2001))
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