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Large-eddy simulation (LES) is becoming increasingly

popular to study turbulent transport in the atmospheric
boundary layer (ABL). LES explicitly resolves the dynam-
ics of the flow for all turbulent scales larger than the grid
size J*KMLON (on the order of 10 m in the ABL), while the
contribution of the subgrid scale physics is parameter-
ized. Subgrid-scale (SGS) modeling constitutes a major
challenge in LES due to the fact that simulation results
are very sensitive to PRQ?S the subgrid-scale model formula-
tion, and PUT ) the way the model coefficients are specified
(Meneveau and Katz, 2000; Piomelli, 1999, 2002).

In LES the separation of scales between resolved and
subgrid scales is achieved by filtering (with a filter of
characteristic width JWVXJ*KMLON ) the equations describing
the transport of momentum and scalar quantities. For a
scalar Y , the effect of the unresolved scales (smaller thanJ ) on the evolution of the filtered scalar concentration ZY
appears through the SGS flux []\ , which is defined as

[ \O^`_a \ Ycb Za \dZYMe fhg!i
Note that [ \ needs to be parameterized (using a SGS

model) as a function of the resolved (filtered) velocity and
scalar fields. In the near-ground region of wall-bounded
turbulent flows, such as the ABL, the characteristic eddy
size is relatively small compared to the grid/filter scale,
making the subgrid-scale fluxes a large fraction of the
overall turbulent fluxes. Moreover, near the ground the
flow becomes more anisotropic at all resolved scales (in-
cluding the grid scale) as the filter scale falls near (or even
outside) the upper limit of the inertial subrange. This is
expected to affect the performance of most SGS models
that assume, in one way or another, isotropic behavior at
the subgrid scales and at the smallest resolved scales.
In particular, dynamic models, used to optimize the value
of the model coefficient(s) based on the information con-
tained in the resolved scales, rely on the assumption of
isotropy of the flow and scale invariance of the model co-
efficients at the smallest resolved scales (Germano et al,
1991; Moin et al, 1991; Lilly, 1992). In a recent Q*j;k?lnmok?l
field study, Porté-Agel et al (2001) showed experimen-
tal evidence of scale dependence of the coefficient in the
eddy-viscosity and eddy-diffusion models. They found
that scale dependence is stronger near the ground. This
is consistent with results from a numerical study (Porté-
Agel et al, 2000) that shows scale dependence of the
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eddy-viscosity coefficient computed using the dynamic
model.

In this paper, we address the issue of scale depen-
dence in the eddy-diffusion model (for the SGS scalar
flux). In Section 2 we show evidence from numerical
simulations with the standard dynamic model that near
the ground the model coefficient strongly depends on the
grid/filter scale. In Section 3 we introduce a new dynamic
procedure that accounts for the scale dependence
of the coefficient based on information contained in
the resolved field, thus not requiring any parameter
specification. The new scale-dependent model is tested
in simulations of a neutral atmospheric boundary layer
with a constant surface flux of a passive scalar.
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Eddy-diffusion models are widely used in LES of the
atmospheric boundary layer. A common formulation of
this model is

[}ÁUÂ\ ^ b³ÃÅÄ�ÆÈÇOÉÊRËÌÊ4Í N;Î fdJ*iUÏ�J ÎÑÐÐÐ ZÄ ÐÐÐ
Ò ZYÒ�Ó \ e fdÔ}i

where Õ ZÄ
Õ ^ fdÔ ZÄ�\ Ö ZÄ�\ ÖÈi ÉU× Î is the resolved strain-rate mag-
nitude, ZÄ \ Ö is the resolved strain rate tensor. Ä�Æ ÇOÉÊRË?Ê]Í N Î is
a lumped coefficient that comprises the Smagorinsky co-
efficient Í N in the eddy-viscosity model, and the subgrid-
scale Schmidt number Ä�Æ ÊRË?Ê . Note that if Y is tempera-
ture, then Ä�Æ ÊRË?Ê ^ÙØÛÚ ÊRË?Ê (subgrid-scale Prandtl number).

The value of the model parameters Í N and Ä�Æ ÊRË?Ê (and
therefore Ä�Æ ÇOÉÊRË?Ê Í N Î ) is well established for isotropic tur-
bulence. In that case, if a cutoff filter is used in the iner-
tial subrange and the filter scale J is equal to the grid
size J�K�LÜN , then Í N ^ Í�Ý³Þàß eÅg]á and ÄsÆ ÊRË?Ê Þ�ß e â
(Lilly, 1967; Mason and Derbyshire, 1990). However,
anisotropy of the flow and the presence of a strong mean
shear near the surface in high Reynolds number bound-
ary layers makes the optimum value of those coefficients
depart from their isotropic counterparts.

The so-called dynamic models avoid the need for Qj;k�lãmok�l specification and consequent tuning of coefficients
because they are evaluated directly from the resolved
scales in LES (Germano et al, 1991; Moin et al, 1991;
Lilly, 1992). For scalar fluxes, the dynamic procedure is
based on the identity

ä \�^Ùå=\ b [ \ ^ Z a \dZYcb Za \ Z Y�æ fãç1i
where å \ ^ _a \dYÑb Za \ Z Y is the SGS flux at a test-filter scale
(typically J ^ Ô}J ) and

ä \ is a ‘resolved flux’ vector that



can be evaluated based on the resolved scales. Applying
the eddy-diffusion model, å \ is determined by

å \ ^ b Ã Ä�Æ ÇOÉÊRË?Ê Í N;Î�� J�� Ï J Î ÐÐÐ ZÄ ÐÐÐ Ò Z YÒ�Ó \ e fnâ�i
Substitution of Eqs. (2) and (4) into (3) leads to the

system ä \Ü^ ÄsÆ ÇOÉÊRË?Ê]Í N Î�� \ æ f��}i
where, for J ^ Ô}JDæ� \�^ J Î � ÐÐÐ ZÄ¦ÐÐÐ Ò ZYÒ�Ó \ b â Ä�Æ ÇÜÉÊUËÌÊ Í N Î fãÔoJ*iÄ�Æ ÇOÉÊRËÌÊ Í N Î fdJ*i ÐÐÐ ZÄ¦ÐÐÐ

Ò Z YÒ�Ó \
	 e f��1i
It is important to note that the traditional dynamic model
assumes scale invariance of the model coefficient at the
filter and test filter scales, i.e.,

Ä�Æ ÇOÉÊRË?Ê Í N�ÎsfdJ*i ^ ÄsÆ ÇOÉÊRË?Ê Í N;Î
� J�� ^ Ä�Æ ÇÜÉÊRË?Ê Í N;Îoæ fdá}i
Minimizing the error associated with the use of the

eddy-diffusion model in Eq. (3) over all three vector com-
ponents as well as over some averaging region of sta-
tistical homogeneity or fluid pathlines (Meneveau et al,
1996), results in

Ä�ÆoÇÜÉÊUËÌÊ]Í N7Î
^�� ä \ � \��� � \ � \�� e f��1i
Although widely used in the engineering commu-

nity, the dynamic model has not yet become common
practice in simulations of atmospheric boundary layers.
In a recent study, Porté-Agel et al (2000) applied the
dynamic model to compute Í N in simulations of a neutral
boundary layer. They showed that, as opposed to the
traditional eddy-viscosity model that is too dissipative
near the ground, the dynamic model is not dissipative
enough, leading to velocity gradients that are too small
near the ground. They also showed that the value ofÍ N obtained from simulations depends on resolution,
which violates the assumption of scale invariance. Next,
we apply the dynamic model to compute Ä�Æ ÇÜÉÊUËÌÊ Í N Î and
study the issue of scale dependence.
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We implement the standard dynamic eddy-viscosity

and dynamic eddy-diffusion models in the simulation of
a neutrally stable (no convective forcing) atmospheric
boundary layer with a constant and uniform surface flux
of a passive scalar. We use a modified version of the LES
code described by Porté-Agel et al (2000). The dynamic
coefficients are computed every 10 time steps.

Figure 1 shows the non-dimensional vertical gradient

of the mean scalar concentration ��� ^�����! Â#" Z ��$Â � as a
function of distance to the ground % , normalized by the
boundary layer depth & . ' is the von Karman constant
( ' ^ ß e â ), Y p ^ bÑ[)( a ÇÜÉp , [)( is the surface scalar flux,
and a p is the friction velocity. According to similarity the-
ory (Businger et al, 1971) one expects that in the surface
layer (approximately lower 10 % of the boundary layer)� � has a constant value of ß e á!â . The combination of the

eddy-viscosity model and the eddy-diffusion model yields
a value of � � that is too small near the ground, and in-
creases too sharply in the surface layer (where ��� is ex-
pected to remain constant).
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FIGURE 1. Non-dimensional vertical gradient of the mean

scalar concentration ( * �,+ ����  Â#" Z ��$Â � ) from simulations with the

traditional (scale-invariant) dynamic model.

The value of the model coefficient Ä�Æ ÇÜÉÊRË?Ê Í N Î returned
by the dynamic model (Eq. 8) is presented in Figure 2. In
order to examine the dependence of the dynamic coeffi-
cient on J we show results from four simulations that use
the dynamic model with different resolutions ( ÔÈâ.- Ô!â/-cÔÈâ ,ç0�1-�ç0�2-�ç3� , �Èâ4-5�!â4-6�!â , and � ß -6� ß -6� ß nodes,
respectively). The value of the eddy-diffusion coefficientÄ�Æ ÇÜÉÊRË?Ê Í N Î from the four simulations is presented in Fig-
ure 2 as a function of the distance to the surface % , nor-
malized by J . The collapse of the four curves indicates
that the model coefficient is dependent on %87}J . For any
given J , we observe the expected reduction of the coef-
ficient with decreasing % . However, at a fixed height % ,Ä�Æ ÇÜÉÊRË?Ê Í N Î depends on J , which is consistent with the re-
sults found by Porté-Agel et al (2001) (also shown in Fig-
ure 2) using data from an Q�j;k?lnmok?l field study. Scale de-
pendence appears to extend higher up in the boundary
layer for Ä�Æ ÇÜÉÊUËÌÊÌÍ N Î than for Í N , which remains approxi-
mately scale invariant away from the ground (Porté-Agel
et al, 2000). It is important to note that scale dependence
of the model coefficient constitutes an internal inconsis-
tency in the standard dynamic model since Figure 2 is
obtained by assuming scale invariance. Therefore, it is
of interest to generalize the dynamic models to include
scale-dependence.9/: @�¨�©;:�H�¬®±�©�<wEG©
=¦©c>�E	©c>�@ E�«G>�¬®­¯<4H­°C*EG©)±9/:n9�­³²/´OµM¶¸·U²;¹oº#»�¶½¼�¾]¿½²�À

Without assuming that Ä�Æ ÇOÉÊRË?Ê Í N Î fdJ*i ^ ÄsÆ ÇOÉÊRË?Ê Í N Î fdÔoJ*i
we can still apply the dynamic model given by Eqs. (3),
(5) and (6). Note that this change introduces a new un-
known > �5? Ä�Æ ÇOÉÊRË?Ê Í N Î fdÔ}J*i@7}Ä�Æ ÇÜÉÊUËÌÊ Í N Î fdJ*i . For scale-
invariant situations, > � ^ g . In order to compute Ä�Æ ÇOÉÊRË?Ê Í N Î
using Eq. (8) we need to estimate > � . A dynamic value
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FIGURE 2. Dynamic coefficient as a function of � ��� , obtained

from simulations with different resolutions (open symbols) and

from an a-priori field study (Porté-Agel et al, 2001).

for > � can be obtained using a second test-filter at scale�J�� J . For simplicity, and without loss of generality, we
take

�J ^ â1J , and denote variables filtered at scale â�J by
a caret (

�
). Writing the Germano identity between scaleJ and â�J yields

ä��\ ^ ÄsÆÈÇOÉÊRË?Ê Í N Î � �\ æ f
	1i
where ä��\ ^

�
Z a \ ZY b � Z a \

� ZYMæ fhg ß i
and� �\ ^ J Î �
�

ÐÐÐ ZÄ ÐÐÐ
Ò ZYÒ�Ó \ b â Î Ä�Æ ÇOÉ

ÊRË?Ê]Í N Î fnâ�J*i
Ä�Æ ÇOÉÊRË?Ê Í N Î fdJ*i ÐÐÐ

� ZÄ ÐÐÐ
Ò � ZYÒ�Ó \)	 e

fhgog!i
Again minimizing the error as in Section 2 yields, be-

sides Eq. (8), another equation for Ä�Æ ÇOÉÊRËÌÊ Í N Î fdJ*i :
Ä�Æ ÇÜÉÊUËÌÊ]Í N Î fãJ*i ^�� ä �\ � �\ �� � �\ � �\ � e fhg]Ô}i

Setting Eq. (8) equal to Eq. (12) yields� ä \ � \ ��� � �\ � �\�� b�� ä��\ � �\�� � � \ � \ � ^ ß æ fhg4ç1i
which has two unknowns, > � ^Ä�Æ ÇÜÉÊRË?Ê]Í N Î fãÔ}J�i 7}Ä�Æ ÇOÉÊRËÌÊ!Í N Î fdJ*i and � ^Ä�Æ ÇÜÉÊRË?Ê Í N Î f�â�J�i 7}Ä�Æ ÇOÉÊRËÌÊ Í N Î fdJ*i . In order to close the
system, a relationship between > � and � is required.
Thus, a functional form of the scale dependence of the
coefficient needs to be postulated. As in Porté-Agel
et al (2000), we assume a power law of the formÄ�Æ ÇÜÉÊRË?Ê Í N Î fãJ*i Þ J�� , or, in a dimensionally appropriate
way, Ä�ÆoÇÜÉÊRË?Ê Í N Î f��ÛJ*i ^ Ä�ÆoÇOÉÊRË?Ê Í N Î fãJ*i�����e fhgÌâ�i

For such a power-law behavior, > � does not depend on
scale and is equal to > � ^ Ô � . Note that this assumption
is much weaker than the standard dynamic model, which
corresponds to the special case � ^ ß . We stress
that one does not need to assume the power-law to

hold over a wide range of scales, but only between
scales J and â1J . A consequence of the assumed local
power-law is that Ä�Æ ÇOÉÊRËÌÊ4Í N Î fdÔoJ*i 7oÄ�Æ ÇOÉÊRË?Ê]Í N Î fdJ*i ^Ä�Æ ÇÜÉÊRË?Ê]Í N Î f�â�J�i 7}Ä�Æ ÇOÉÊRËÌÊ!Í N Î fdÔoJ*i ^ > � , and thus
� ^ ÄsÆ ÇOÉÊRË?Ê Í N Î f½â�J*i@7}Ä�Æ ÇÜÉÊRË?Ê Í N Î fdJ*i ^ > Î� . With this
substitution Eq. (13) only contains the unknown > � , and
can be rewritten as a fifth order polynomial on > � . One
can show that only the largest root is physically viable. A
Newton-Raphson method is used to find that root. Once> � has been computed, it is used in Eq. (6) to compute� \ which in turn is used in Eq. (8) to obtain ÄsÆ ÇÜÉÊRË?Ê Í N Î fãJ*i .9/:¤§�>�»sº µy¹È¿��}¼7¶��]¿nº�»O¶½¼7¾]¿¤²�À��

The scale dependent dynamic model is applied to com-
pute Í N and ÄsÆ ÇOÉÊRË?Ê]Í N Î in simulations of the same neu-
tral atmospheric boundary layer with a constant scalar
flux presented in section 2. The scale-dependent coef-
ficients are computed every 10 time steps. We found that
the scale-dependent dynamic models take only about 4%
more CPU time than the traditional dynamic models.

Figure 3 shows the time averaged values of > � ^Ä�Æ ÇÜÉÊRË?Ê]Í N Î fãÔ}J�i 7}Ä�Æ ÇOÉÊRËÌÊ!Í N Î fdJ*i as a function of the nor-
malized height % 73& for a resolution of �Èâ�- �!â - �!â nodes.
In the interior of the flow > ��� 0.8, indicating that for that
resolution ÄsÆ ÇOÉÊRËÌÊ Í N Î remains scale dependent even far
from the surface. This is consistent with the results pre-
sented in Fig. 2, and it agrees with the fact that anisotropy
in turbulent flows is stronger for scalars than for the veloc-
ity field (Warhaft, 2000; Kang and Meneveau, 2001).
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FIGURE 3. Vertical distribution of the time-averaged value of� � , obtained using the scale dependent dynamic model.

The averaged non-dimensional scalar concentration

gradient ( � � ^ ����  Â#" Z ��$Â � ) from the scale-dependent dy-
namic model and the standard dynamic model are shown
in Figure 4. The scale-dependent dynamic model yields
values of � � that remain closer to ß e á!â , and relatively con-
stant near the wall, indicative of the expected logarithmic
profile. Also as expected, �/� increase progressively as
we move away from the wall into the so-called wake re-
gion.
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FIGURE 4. Non-dimensional vertical gradient of the mean

scalar concentration ( * �,+ ����! Â#" Z ��$Â � ) from simulations with the

traditional (scale-invariant) dynamic model and scale-dependent

dynamic model.
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A modification of the dynamic model is presented that

accounts for scale dependence of the lumped coefficient
( Ä�Æ ÇÜÉÊRË?Ê Í N Î ) in the eddy-diffusion SGS model. Motiva-
tion for including scale dependence is presented from
simulations using the traditional (scale-invariant) dynamic
model. Results from the simulations are consistent with
previous results from an Q¸j;k�lãmok�l field study (Porté-Agel et
al, 2001). Scale dependence is stronger near the ground
where the filter and/or test filter scales are comparable to
the distance to the ground, falling near (or even outside)
the upper limit of the inertial subrange.

The basic conclusions from this paper are: P���S The
dynamic model can be generalized to allow for scale-
dependence in a fully dynamic and self-consistent way.P��]S Simulations with such a model are stable and robust,
and yield expected trends of the coefficient as function of
scale. P��4S Applications to LES of the ABL show improved
mean velocity and scalar concentration profiles.

Future work will extend the implementation of the
scale-dependent dynamic procedure to other base
models (e.g., mixed model, Lagrangian model), and to
other flow conditions where scale dependence of the
model coefficient is expected. In particular, the new
scale-dependent procedures are expected to better
capture the dynamics of the flow in boundary layers with
stable stratification (e.g., nocturnal boundary layers and
inversion layers) and/or high degree of surface hetero-
geneity (e.g., changing topography and land cover).
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