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1. INTRODUCTION

The study is inspired by the idea that the convective
boundary layer (CBL) driven by the surface heat flux
Qo should under certain conditions, grow self-similarly.
The CBL with depth h can be interpreted with a two-
layer-model: the lower layer is the relatively mixed layer
ranging from the surface to the height h,,, the upper one
is the interfacial layer with the depth of Ah = h — hp,.

At the initialization, a uniform lapse rate I' = % is
specified throughout the flow. With the constant surface
heat flux Qo, a CBL develops and grows with time into
the capping inversion, while it is always topped by the
stable stratification I". Our LES experiment shows such
a growth of CBL is self-similar, as in Fig. 1. By using
“self-similar”, we mean that the shape of the 6 profile
does not depend on the time provided I' and Qo are
constants. That is, the profiles at different moments are
non-dimensionally equivalent.

Horizontal homogeneity is assumed. The molecular
diffusion is always insignificant and is neglected. The
first law becomes

o0 oQ
%= 5. 1)

2. ANALYTIC INTERPRETATION WITH
MIXED LAYER ASSUMPTION

In the limit of strong capping inversion,
Ah <L h. (2)

So the inversion can be approximately treated as a jump
of Af across h. With mixed layer assumption,

AG =0, — 0. (3)

where 0,, is 0 in the mixed layer and 0; is 6 at the top
of CBL. In our problem, 6; = 6o + I'h, 6o is the initial
surface value of 6.

‘With the initial conditions

Af =0, (4)
=0, (5)
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Figure 1: Time series of A = 2% in LES experiment.

we have the solution as

_ [2TQot
Ab =157 (6)

140
h=——A0, (7)

where b = 1 — é 1 — « is the nondimensional average
heating rate in the mixed layer. Because 5% = L= the

. o DI
growth is self-similar.

3. SELF-SIMILARITY SCALING WITH
FINITE-DEPTH INTERFACIAL LAYER

In the previous section we had an analytic solution for
self-similarly growing CBL without resolving the struc-
ture of the interfacial layer. Here it is assumed that there
exist self-similar profiles for § and @ in the CBL:

Q= Qof(0), (®)
0 =0u + ATH¢(o), 9)
where .

and ¢(o) and f(o) are the self-similar nondimensional
profiles of # and @ respectively. Note we have had self-
similarity built in when scaling §. A = % is a nondimen-
sional constant. H is a length scale, which for reasons we
elaborate on further below, is chosen such that H > h.

Og is 0 at z = H. The coordinate transformation

(t,z) — (H,0) (11)



allows us to take advantage of the above self-similar
nondimensional profiles. We have

O _dH O o dH 9 (12)
ot dt OH H dt 9o’

9_190 (13)
0z HOo

Using (8), (9), (12) and (13), (1) can be rewritten

as
1 do\ _ df

{Z+¢(U)_U%}_ C’%. (14)

where C' = ﬁoﬁ is proportional to the heat capacity

of the whole PBL and its value is decided by the heat
budget. Because for Ef = 0, (14) implies that f is lin-
ear with o, (14) is consistent with mixed layer model.
Equation (14) relates the profile of § with that of @ in
the case of self-similar growth. An integration yields

r0)=g{o (s60)-5) -2 [ 80 )ao |
-2 (oton) - ) + 1(00)

where oy is a reference value.
The parameters in (14) can be derived with the as-
sumption of finite depth interfacial layer. Define

(15)

s:/mlqﬁdo (16)

where m = h; . We have

Al «a
ASTE TG m T (7)
C=%+2(s—m):2(s_a¢. (18)

We have done two kinds of numerical experiments
which support our scaling. One is to prescribe a nondi-
mensional flux profile (based on (14)) and use it to force
the CBL. It grows self-similarly. The other is to calcu-
late the flux (or the heating rate) using (14) at real time
locally and use it to force the CBL. This approach is
convergent and the result seems decent.

It needs to point out that within the second ap-
proach, we even don’t need an accurate boundary layer
depth estimation, provided that the value is bigger than
the actual one. Suppose H is the estimated boundary
layer depth and H > h. 6 is linear function of z around
z=H,s00(z) = 0( )+TI'(z— H). Nondimensionlizaing
it yields ¢(0) = &(o — 1) (note that ¢(1) = 0). With
this relation, using (14) we see gﬁ— = 0. So even with
estimated depth greater than the actual one, we still get
no flux above the actual CBL top. This property im-
plies a smooth matching across the CBL top for the flux
profile.

4. KPP ISSUES

K Profile Parametrization (KPP)(Large et al. (1994))
method is widely used. Here we want to discuss KPP
within this self-similarity framework. Substitute the flux
with —K (%2 — ) (Deardorff (1966)) in (14), we have

THoe) -0t —o Lk (2 ) qg)
{A do

where K is the turbulent diffusivity and -y is the nolocal
term, which is assumed to be constant for the moment.
The usual practice(Large et al. (1994); Stevens

(2000)) is
K =ko(1—o0)® (20)

where k is a constant. With sucha K, c =0 ando =1
are singular points of (19). Stevens (2000) argued that
the index should be smaller than 2.

Here we assume that

K =ko(l —0)* (21)

to discuss the issues of a.

Instead of solving (19), we study the behavior of this
equation at neutral points (Stevens (2000)). By defini-
tion, at neutral points, % = 0. Here we focus on the
neutral point where ¢ achieve its minimum, so ¢ = —1.
We have

- =kC(l—a)a_l[(1—0—(10)7—0(1—0)%]. (22)

b
A
For a realistic ¢ profile, the term o (1— a)% is assumed
to be negligible. So we finally get
1 —
1- 2 =kC1-0) '1 -0 —ao). (23)
Equation (23) relates the neutral height o, the index
a and nonlocal term 7 together. we also see k£ and ~y play
the role together in the form of kv. This is consistent
with Stevens (2000).
Since (23) may have more than one solution for o,
while the realistic case only permits one solution, it is

assumed here that the desired o leads to a peak value of

the right-hand-side of (23), which implies 0 = 27.
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