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1. INTRODUCTION

Although the turbulent pressure �eld is extremely im-
portant in turbulence dynamics, it has not been studied
as extensively as other �elds, in part due to the inherent
diÆculty of its measurement. We use large-eddy simula-
tion (LES) to calculate resolvable-scale turbulent kine-
matic pressure (i.e., the resolvable pressure divided by
the density) �elds and their wavenumber (�) spectra in
two convective atmospheric boundary layers: a free con-
vection case with zero mean horizontal wind speed and a
convective case in which the mean wind speed is nonzero,
being set at 15 m s�1 above the boundary layer. In each
case the LES domain is 2500 m square in the horizon-
tal and 1000 m deep. The capping inversion height, zi,
is about 600 m. The LES code uses 140 � 140 Fourier
modes in the horizontal plane and 160 grid points in the
vertical direction.

2. PRESSURE SPECTRAL CONSTANTS

Turbulence spectra in the observational community,
in traditional turbulence analysis, and in this analy-
sis all di�er|a source of possible confusion. The ob-
servational community can usually obtain only one-
dimensional spectra along the mean-wind direction. Tra-
ditional turbulence analysis often assumes isotropy and
integrates over constant-wavenumber spherical shells in
three-dimensional wavenumber space to obtain what are
called three-dimensional spectra. Our LES ow is ho-
mogeneous only in the horizontal, so we integrate over
constant-wavenumber rings in the horizontal plane to
obtain what we call two-dimensional spectra. We shall
now relate the two-dimensional spectrum of kinematic
pressure p=� �rst to its three-dimensional spectrum and
then to its one-dimensional spectrum, following Wyn-
gaard (2002).

The integral of the pressure spectrum �(�) over spher-
ical shells in three-dimensional �-space gives what is
called its three-dimensional spectrum. Under the as-
sumption of isotropy, �(�) = �(�) and the three-
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dimensional pressure spectrum E(�) is

E(�) = 4��2�(�): (1)

Using Kolmogorov scaling, Lumley and Panofsky (1964)
predicted the behavior of the three-dimensional pressure
spectrum in the inertial subrange. They assumed that
E(�) depends only on the rate of viscous dissipation per
unit mass, �, and wavenumber, �, from which it follows
that

E(�) = a3�
4=3��7=3; (2)

with a3 a presumably universal constant. This result
was more recently found by Hill and Wilczak (1995) by
analytical means.
Our LES ow is homogeneous only in the horizontal

plane with a pressure spectrum �h(�1; �2). If the ow
is isotropic as well, �h depends only on the horizontal
wavenumber magnitude, �h, where �

2

h = �21 + �22, and
�h can be written as

�h(�h) =

Z
1

�1

�(�)d�3: (3)

Using Eqs. (1), (2), and (3), we have

�h(�h) =

Z
1

�1

a3
4�
�4=3��13=3d�3: (4)

The counterpart of E(�) in the plane is Eh(�h), the
integral of �h over circular rings. We call Eh the two-
dimensional pressure spectrum. Under isotropy in the
plane it becomes simply

Eh(�h) = 2��h�h(�h): (5)

Using Eqs. (4) and (5), we have

Eh =
a3
2
�4=3�h

Z
1

�1

��13=3d�3: (6)

After variable changes, Eq. (6) becomes

Eh = a3�
4=3�

�7=3
h

Z �=2

0

(cos�)7=3d�; (7)

where � is the angle between � and �h. The integral in
Eq. (7) can be expressed in terms of Gamma functions
and then Eq. (7) simpli�es to:

Eh = 0:74 a3�
4=3�

�7=3
h : (8)



If we write the two-dimensional spectrum in the inertial
subrange as

Eh = a2�
4=3�

�7=3
h ; (9)

and use Eq. (8), we then have the relationship between
the two- and three-dimensional spectral constants

a2 = 0:74 a3: (10)

Experimentalists measure the one-dimensional spec-
trum of pressure, F (�1). Under isotropy it is the integral
of �h(�h) over all �2:

F (�1) = 2

Z
1

�1

�h(�h)d�2: (11)

The factor of two in Eq. (11) is required so that F inte-
grates over the half-line to the variance, as is customary
in experimental micrometeorology. In the inertial sub-
range this becomes, using Eqs. (5), (9), and (11),

F (�1) = 2

Z
1

�1

a2�
4=3�

�10=3
h d�2: (12)

Solving in a manner similar to the two-dimensional case,
we �nd

a1 = 0:58 a2; (13)

where we have used the de�nition of the one-dimensional
spectrum in the inertial subrange:

F (�1) = a1�
4=3�

�7=3
1

: (14)

3. PRESSURE RETRIEVAL

The LES code solves the �ltered equation of motion
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subject to the continuity condition

@uri
@xi

= 0; (16)

where uri is the �ltered or resolvable uctuating velocity
�eld, pr is the resolvable kinematic pressure, 
j is the
earth's rotation vector, �0 is the background, adiabatic
pro�le of potential temperature, g is the acceleration of
gravity, and �r is the resolvable-scale uctuating poten-
tial temperature. This equation incorporates the usual
Boussinesq treatment of buoyancy. Because of the large
Reynolds number of atmospheric boundary layer ow,
the �ltered viscous term is negligible and so does not ap-
pear. The term �ij � (uiuj)

r
�uriu

r
j is the subgrid-scale

kinematic stress that originates through the �ltering of
the nonlinear advection term in the equation of motion.

The LES code solves Eq. (15) numerically, using pe-
riodic boundary conditions in the horizontal directions
and �nite di�erences in the vertical direction (Moeng
1984). Taking the divergence of Eq. (15) gives a Poisson

equation for the resolvable kinematic pressure �eld for
quasi-steady conditions (Moeng and Wyngaard 1986):
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We break the divergence of the advection term in Eq.
(15) into two parts: the �rst term on the right-hand
side of Eq. (17) is the mean-shear contribution and the
second term is turbulent-turbulent contribution. Here
Uj is the horizontal average of uj and a double prime
denotes a deviation from the horizontal average.
Solving Eq. (17) with the appropriate upper and

lower boundary conditions yields the resolvable-scale
kinematic pressure �eld, pr(x; y; z; t) at each time step.
We use the pressure solver discussed by Moeng andWyn-
gaard (1986) to isolate the contributions from each of the
terms on the right side. That is, we write

pr = pms + ptt + psg + pc + pb; (18)

so that the resolvable pressure is the sum of mean-shear,
turbulence-turbulence, subgrid, Coriolis, and buoyancy
contributions, respectively. We accomplish this with the
solver in the LES code, in turn zeroing all but one of
the forcing terms on the the right side of Eq. (18), us-
ing the appropriate boundary conditions for that compo-
nent, and solving for each component of pressure. This
ensures that the numerics in the pressure-decomposition
solver are precisely those of the pressure solver in the
LES code.
We can also solve for the buoyancy and mean-shear

contributions to the pressure spectrum analytically. We
write a Poisson equation for the \buoyant pressure," pb,
the uctuating kinematic pressure �eld driven solely by
buoyancy. In the Boussinesq approximation this is

5
2pb =

g

�0

@�

@z
: (19)

It can be shown that this yields a relation between the
resulting buoyant pressure spectrum and the tempera-
ture spectrum:

�bp(�) =
�
g

�0

�2 �23
�4
 (�); (20)

where � is the three-component wavenumber vector and
 is the temperature spectrum. Assuming �bp(�) is
isotropic in the horizontal plane and integrating over �3,
the equation that relates the two-dimensional spectra in
their inertial subranges is

Eb
h(�h) = C

�
g

�0

�2

�
�11=3
h : (21)

C depends on the inertial-subrange level of the two-
dimensional temperature spectrum E�

h:

C = 0:13 �
5=3
h E�

h: (22)



Figure 1: Two-dimensional pressure spectra at z = 0:10 zi for a) free convection and b) convection with shear. The

dotted line is the �7=3-slope line that best �ts the pressure spectrum in the inertial subrange. The dashed line is the

analytical solution for the buoyancy contribution to the pressure spectrum and the dot-dashed line is the analytical

solution for the mean-shear contribution to the pressure spectrum.

We determine the mean-shear contribution in a similar
manner. The poisson equation for the mean-shear part
of the uctuating pressure is given by

5
2pms = �2
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Solving Eq. (23) yields a relation between the mean-
shear part of the pressure spectrum �ms

p (�) and the ver-
tical velocity spectrum �33(�):

�ms
p (�) = 4

�
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�2 �21
�4
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Assuming �ms
p (�) is isotropic in the horizontal plane and

integrating over �3 gives

Ems
h (�h) =

�
@U

@z

�2

B�
�11=3
h (25)

for the inertial range. B depends on the two-dimensional
vertical velocity spectrum Ew

h in the inertial range:

B = 1:4Ew
h �

5=3
h : (26)

Pressure spectra near the top of the surface layer
(z = 0:10 zi) are shown in Fig. 1 for the free convec-
tive case and the convective case with shear. Both show
evidence of ��7=3 behavior in the inertial subrange. The
constant a3 in the three-dimensional pressure spectrum,
derived from the least-squares best-�t of these spectra
and Eq. (10), is about 4.0 in each case. Our value is quite
close to the value determined from the velocity struc-
ture function (3.59, George et al. 1984). In contrast,
the LES results of M�etais and Lesieur (1992) indicated
a value of 2.6 for a3, and direct numerical simulation re-
sults yielded 7.0-8.0 (Pumir 1994; Gotoh and Fukayama
2001). Using Eqs. (10) and (13), the equivalent constant
a1 in the one-dimensional pressure spectrum is about 1.7
(for a3 = 4:0). The constants changed little with height
throughout the mixed layer for our cases (not shown).

The analytical solution for the buoyant pressure spec-
trum (Fig. 1) falls below the inertial-subrange pres-
sure spectrum in each of the two cases, suggesting that
buoyancy e�ects are not important in the inertial sub-
range of our pressure spectra. Buoyancy e�ects are also
not important for all but the smallest wavenumbers in
the energy-containing range. For the mean-shear case
(Fig. 1b), the mean-shear contribution is larger than
the buoyancy contribution, but still considerably smaller
than the pressure spectrum in the inertial subrange.
For both cases, the Coriolis and subgrid-scale contri-

butions determined from the Poisson solver were negli-
gible (not shown). Since the buoyancy and mean-shear
contributions are relatively small as well, we are left with
the turbulence-turbulence term as the largest contribu-
tor in the inertial subrange. This would seem to be a
necessary condition for a universal pressure spectrum in
the inertial range.

4. PRESSURE-DIFFERENCE SPECTRA

We are especially interested in the behavior of pres-
sure uctuations near the surface. LES does not perform
optimally there, however, because the horizontal scale of
the vertical velocity �eld w decreases as we approach the
surface. This causes the vertical velocity to be under-
resolved there and as a result the LES code relies more
heavily than usual on its subgrid-scale model. The e�ect
of this on the turbulent pressure �eld is unknown.
To assess the �delity of the pressure spectra near the

surface, we examine the behavior of di�erences in pres-
sure at two near-surface heights. The idea is as follows.
If p1 and p2 are random variables, the average of their
squared di�erence is given by

(p1 � p2)2 = p2
1
+ p2

2
� 2p1p2;

where p1p2 is the covariance of p1 and p2. If p1 and
p2 are uncorrelated, p1p2 is zero and the di�erence vari-



Figure 2: Two-dimensional pressure spectra (dotted line) and vertical pressure di�erence spectra (solid line) at

z = 0:02 zi for a) free convection and b) convection with shear.

ance is the sum of the variances. Conversely, if p1 and
p2 are perfectly correlated, their di�erence variance is
zero. Since the spectrum of a variable is the variance
as a function of wavenumber, di�erence spectra can be
interpreted in a similar manner.

At the largest wavenumbers in the LES (correspond-
ing to the smallest resolved spatial scales, on the order
of the LES grid mesh), the horizontal scale of the ed-
dies is on the order of one-tenth of the boundary-layer
depth. The correlation of the pressure at this wavenum-
ber at vertical levels separated by that distance should
approach zero, and thus the spectrum of the di�erence
of pressure at the two vertical levels should approach the
sum of the spectra of the pressure at the two levels. At
the smallest wavenumbers (corresponding to the largest
scales), the horizontal scale of the eddies is of the order
of the boundary-layer depth. Thus the correlation of the
pressure at nearby levels should approach 1.0, leading to
very small values for the di�erence spectrum.

The vertical pressure-di�erence spectra and the pres-
sure spectra (the latter at the lower of the two levels)
are shown in Fig. 2 for z = 0:02 zi. The di�erence was
calculated between the pressures at levels separated by
three times the vertical resolution. For both the free-
convection case (Fig. 2a) and the shear case (Fig. 2b),
the di�erence spectra behave as expected in that the
variance is high for large wavenumbers and near zero for
small wavenumbers. The wavenumber at which the dif-
ference spectra cross the pressure spectra, an indicator
of the wavenumber at which the decorrelation becomes
signi�cant, is about 0.1 rad m�1, corresponding to eddies
on the order of one-tenth of the boundary layer depth.
Similar values are found throughout the mixed layer for
both cases (not shown).

The results suggest that the pressure spectra in the
energy-containing range are well-behaved even very close
to the surface, with the errors caused by inadequate spa-
tial resolution impacting mainly the smaller rather than
the energy-containing scales.

5. SUMMARY

These LES results suggest the pressure �eld is well
resolved for the two convective cases we present. Even
close to the surface the pressure spectra exhibit ��7=3

behavior and the pressure di�erence spectra are well be-
haved. We also relate the inertial range constants of
one-, two-, and three-dimensional pressure spectra.
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