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1. INTRODUCTION

Turbulence is generally conceived as a collection of
eddies of many different sizes (Hinze, 1975; Batchelor,
1953). The “quasi-wavelet” (QW) model discussed in
this paper is an attempt to develop a mathematical
representation for the turbulence that more closely re-
sembles this physical picture than Fourier modes or cus-
tomary wavelets. Like customary wavelets(Farge, 1992;
Meneveau, 1994), the QW representation is based on
self-similar localized functions. However, the orienta-
tions and positions of the quasi-wavelets are random,
and the QW basis functions are not required to be or-
thonormal or to form a mathematically complete set.
Some other important features of quasi-wavelets are:
¢ They naturally have ensemble statistics close to that
of real turbulence as a consequence of the realistic basis
functions.

e They can simultaneously provide information about
scales of motion and spatial intermittency.

o They potentially allow simplified models of anisotropy
and inhomogeneity.

e They can readily be used to generate synthetic tur-
bulence fields.

With regard to this last point, quasi-wavelets can
serve as a substitute for random Fourier modes, which
have previously been used in many applications such as
structural wind loading and simulation of wave scatter-
ing (Mann, 1998; Gilbert et al., 1990). In these applica-
tions, the spatially localized nature of the quasi wavelets
can be advantageous (deWolfe, 1983; Goedecke and
Auvermann, 1997).

This paper is organized as follows. In Section 2,
we provide an overview of the formulation of the QW
model. A relationship between the quasi-wavelet basis
function and the energy spectrum of the turbulent ve-
locity fluctuations is derived in Section 3. Several pos-
sible QW bases and their corresponding energy spectra
are discussed in Section 4. In particular, a QW basis
function that exactly yields the von Kdrman spectrum
is found. We also consider possible QW models cor-
responding to the modified von Kirman spectrum of
Kristensen et al. (1989), which includes the empirical
Kansas spectrum developed by Kaimal et a/ (1972) as a
special case. In Section 5, we present example results.

2. OVERVIEW OF THE QW MODEL

The main goal of the QW model is to represent
turbulent fluctuations by the simplest possible set of
localized structures that resemble actual eddies. In the
original formulation of the model (Goedecke and Auver-
mann, 1997), these structures were called “turbules.”
Here we use “quasi-wavelet,” due to the localized and
self-similar nature of the basis functions. For isotropic
turbulence, the simplest quasi-wavelet for solenoidal ve-
locity fluctuations was found by Goedecke and Auver-
mann to be a rotating spherically symmetric structure
given by

v=V xA, A:aQQf(u> (1)

a

where A is a vector potential; a is the “size” or length
scale of the quasi-wavelet, b is the location of its center,
and € is its angular velocity parameter. In an isotropic
model, the angular velocity has a uniform, random dis-
tribution over the 47 solid angle. The scalar function
f, called the QW envelope function, is any dimension-
less localized function of its argument |r — b|/a. The
model turbulent velocity field results from superposition
of very many such quasi-wavelets. For homogeneous
turbulence, each quasi-wavelet has uniformly random
center location inside a chosen turbulent volume V.

Note that the individual quasi-wavelets do not nec-
essarily satisfy the fluid equations. We merely require
that an appropriate superposition of quasi-wavelets
must yield the important statistical properties of the
turbulence. In particular, we require in this paper that
the QW model yield correct or otherwise physically rea-
sonable spatial spectra for all ranges of the turbulent
wavenumber k.

Many different sizes a,, are used in the QW model,
ranging from a1, the largest size chosen, to ay, the
smallest. Clearly, a; corresponds to an outer scale
(length scale near the transition between the energy and
inertial subranges), and ay to an inner scale (length
scale near the transition between the inertial and dissi-
pation subranges). A fractal scaling of sizes is chosen,
such that ag/a; = agfaz = ... = ay/an—1 = const.
The magnitude €2 of the angular velocity €2 scales with
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size a such that the characteristic speed v = Qa =
(const.)(a'/?), which is the scaling derived in the Kol-
mogorov energy cascade model (Batchelor, 1953). As a
result of these chosen scaling properties, the model pre-
dicts the Kolmogorov spectrum in a well-defined inertial
subrange, for any physically reasonable choice of QW
function f, if and only if the number density n of the
quasi-wavelets of size a scales like n = (const.)(a™3),
i.e., the QW packing fraction na> must be size invari-
ant.

Other results in Goedecke and Auvermann (1997)
include physically reasonable behavior of the predicted
spectra in both the energy and viscous subranges. In
fact, the QW model always yields energy spectra that
go like k* for small %, then transition to £=5/3 for in-
termediate & (the inertial subrange), and then fall off
much faster than k=5/3 for large k (the viscous sub-
range and beyond). This small k& behavior is due to the
fact that there is a maximum QW size ay, while the
drop-off at large k is due to the presence of a minimum
QW size ap.

3. QUASI-WAVELET THEORY OF VELOCITY
SPECTRA

In Goedecke and Auvermann (1997), an expression
for the velocity spectral tensor ®,,(k) was derived from
a superposition of velocity quasi-wavelets. As shown in
Goedecke et al. (2002), this expression leads to the fol-
lowing relationship between the energy spectrum E(k)
and the scale-invariant, dimensionless QW spectral func-
tion F(y):

kaq
B(H) = o (kar) ™ [y g0 (FG). (@)
0

Here, k is the wave vector, 012) is the variance of one
of the velocity components, and y = ka, so that the
integral extends over all eddy sizes a. The lower limit
on the integral is actually ka n, where a y is the smallest
scale length used. We put a — 0 here; this can only
influence the behavior of E(k) in the viscous subrange.
The QW envelope function f(£) follows as the three-
dimensional, inverse Fourier transform of F(y):

16 = — /d%eiyfF(y),

(27r)3 3
where £ = (r—b) /a and £ = |€]. Also, (r —b) is
the vector from the uniformly random position b of the
center of an eddy to the general position vector r, so
that £ is the scaled distance (in units of a) from the
eddy center. Because of the spherical symmetry, we
have in general from (3)

1 o0

= 9% Ody ysin(y&) F(y).
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Multiplying both sides of (2) by 5/3 and differentiating
with respect to k yields

d

dk
4. MODEL EDDIES

As mentioned earlier, any localized QW envelope
f(&) can be normalized to yield exactly the Kolmogorov
(k—5/3) energy spectrum in an inertial subrange. Only
the boundaries of the inertial subrange and the behavior
of the spectra outside it are sensitive to the functional
form of f(£). In this section, we investigate several
possible QW envelopes.

4.1 Von Kiarman eddy

The von Kdrman spectrum is commonly used in tur-
bulence modeling. Application of this spectrum to at-
mospheric turbulence along with appropriate parameter
values is discussed by Ostashev and Wilson (2000). The
equation for the energy spectrum is

[k5/3E(k)} = 020} (ka, )3 F2(kay).  (5)
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Using (5), we now find
Py rcl) = 80(23/6) 1'% (L, \ ™
VEW) = | /7T(1/3) ar
22\ ~/12
1 < .
x( + p ) (7)
The von Kdrmdn QW envelope function fy x (£) is de-

termined by substituting (7) into (4). The integral can
be found in tables, resulting in

Evk(k) = - (6)

I(23/6) ay ]Y/2 2-11/12
I'(1/3) Lv] w7/4T(23/12)
s\ /12 a
X (%) Ks/12 (%) . (8)
where K, is the modified Bessel function of the second
kind. The value of a; is flexible, although since a; and
L, are both outer scales, we must have L,/a; ~ 1.
Note that in the inertial subrange, E(k) = (550/18)
€2/3 |=5/3 where € is the rate of dissipation of the tur-
bulent kinetic energy per unit mass and o = 0.52 is an
empirical constant. Matching this to the von Kdrméan

energy spectrum in the inertial range kL, >> 1 yields
a relation among L,,, 5,,, and €:

_ [ 2r/6) 17268
L= [aﬁF(l/?»)]

fvk(€) = [

(9)
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4.2 Generalized von Karman and Kansas spectra

Kristensen et al. (1989) proposed the following gen-
eral equation for the one-dimensional longitudinal spec-
trum:

__ opb(u)Ly
X||(k) - 7'('(1 + (kLv)QM)t')/GM ’

with b(p) = mul’(5/6p) /T'(1/2)T'(1/3p). The para-
meter p controls the sharpness of the transition between
the energy and inertial subranges; p = 1 corresponds
to the von Kdrman spectrum. The longitudinal inte-
gral length scale for this model is £ = b(p)L,. The
corresponding energy spectrum is

(10)

Eovi(k) = 5‘712)b(ﬂ)§;(kLv)2u
[(2 — 2) + (11/3)(kLy)*]
[1+ (kL,)2w]2+5/6n

(11)

If & = 1, this reduces to the von Kdrmdn expression.
For small k, the energy spectrum E(k) for isotropic
turbulence is expected to go like k* (Hinze, 1975). We
note that Eqy x goes like k* for small &k only for =1
or 2. The empirical spectra developed by Kaimal et
al (1972) on the basis of the 1968 Kansas experiment
correspond to y = 1/2, for which Egy i is proportional
to k for small k. For the Kansas spectra with p = 1/2,
(5) and (11) yield

FEEL2(y) = 40 (Lo/a1) (1+14L,y/3a,)'/?
GVK 27 y3/2 (14 Lyy/a)4/6
(12)

as the Fourier transform of the QW function fx 4(&).
This Fi 4 diverges for y — 0, a direct result of the
unusual behavior Ex 4 o k for small k. We have
not attempted to find a closed-form expression for the
“Kansas eddy” fx4(£), mainly because the unphysi-
cal behavior of F 4 for small y casts doubts that the
Kansas spectrum can be modeled by quasi-wavelets.
Perhaps this difficulty is to be expected, because em-
pirical spectra can contain anisotropic features that are
not present in the isotropic QW model.

4.3 Gaussian and Exponential Eddies

Although the von Kdrman spectrum is simple, its
QW envelope function fy x(£) is not. We now show
that simpler QW functions can produce spectra very
close to the von Karman spectrum. First, consider the
following Gaussian-type envelope, which was used in
Goedecke and Auvermann (1997):

Fo(y) = Fo(Q)e ™/ — fa(€) =n**Fa(0)e ™,

(13)
where the second equation results from (3). Substi-
tuting (13) into (2) and requiring that the resulting

0.18

— von Karman, ¢°=c'

2
G
_ 2
\ — — von Karman, o —UE

2
v
0.16 } Gaussian 2
v

— - exponential

QW envelope function, f( £)

0 0.5 1 15 2 25 3 35 4
Scaled distance from eddy center, &

Figure 1: Comparison of various QW envelope functions.

spectrum agree with the von Kdrman spectrum in the
inertial range, we obtain

Cvk

r0 - [ratim] ()

and

_ COyko? v (17/6, k%a?/2)
= ws2s TT6)

Eq(k) (15)

where ¥(p, z) is the incomplete gamma function.

We may assign the ratio in L,/ay in several rea-
sonable ways. For example, we could require the vari-
ances of the QW and von Kdrman spectra to be the
same. After a lengthy analysis, this leads to the con-
dition L, /a; = 0.8379. Alternatively, we could require
the small k behavior of the Gaussian QW and von Kar-
madn spectra to be the same. This choice is discussed
in more detail in Goedecke et al. (2002).

A second example of a simple QW envelope con-
sists of eddies with an exponential Fourier transform
(exponential FT eddies), given by

1 Fg(0
Fily) = Fu(0)e™ — () = 520
()
Substituting (16) into (2) and requiring that (6) and
(2) agree in the inertial range, we obtain F(0) and
the energy spectrum Ep(k) for these eddies:

(16)

1/2

mo-[T] (2)7 w

Cvkos ] [7(17/3’2]““1)] (18)

Eg(k) =
(k) [ k5/312/3 r'(17/3)
Setting 02, = 02, we find L,/a; = 0.7238.
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Figure 2: Comparison of energy spectra resulting from var-

ious QW envelope functions.

5. RESULTS

Various QW envelopes f(£) derived in the preced-
ing section are shown in Figure 1. The Gaussian and
exponential envelopes are similar, both being flat at
the origin. The von Kdrman envelope, in contrast, has
non-zero slope at the origin. Two versions of the von
Kdrmdan envelope are shown, one for variance equal-
ing the Gaussian spectrum, and the other for variance
equaling the exponential spectrum.

In Figure 2, we plot the normalized energy spectra
for the von Kdrmdn, Gaussian, and exponential QW
envelopes. The spectra have been normalized to have
the same variance. While they are all identical in the
inertial subrange, in the energy subrange they share only
the same slope (k*). The position of the asymptote
differs because the integral length scale depends on the
QW envelope.

6. SUMMARY AND DISCUSSION

The von Kdrmdn energy spectrum of turbulent ve-
locity fluctuations has been widely used in studies of
turbulence and wave (acoustic and electromagnetic)
propagation in random media. In this paper, we found a
QW envelope function that yields exactly the von Kar-
mdn velocity spectrum. We also showed that the QW
model has flexibility extending beyond the von Kdrman
spectral model. In particular, it allows velocity spectra
that reduce to the Kolmogorov spectrum in the inertial
subrange but are adjustable in the energy subrange.
This is important because models based on the von
K&drman spectrum sometimes do not agree well with ex-
perimentally determined one-dimensional spectra in the
energy subrange. An objective in further development
of the QW model is to determine a QW function and
corresponding spectrum that yields the best match to

experimental data in both the energy and inertial sub-
ranges. This will require a QW model of anisotropic
turbulence, which we are now attempting to formulate.
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