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1. INTRODUCTION

The introduction of the WSR-88D Doppler radar
into nationwide use has greatly enhanced our ability to
study storm-scale vortices such as mesocyclones and
tornado vortex signatures. During the past decade
several algorithms have been developed by the NOAA
National Severe Storms Laboratory (NSSL) to diagnose
these vortices and determine their characteristics using
WSR-88D data. One such algorithm is the Mesocyclone
Detection Algorithm (MDA) (Stumpf et al. 1998). Using
the MDA, many mesocyclone attributes have become
available for study. One important avenue of research is
determining the correlation of mesocyclone attributes
with the occurrence (or non-occurrence) of severe
weather phenomena such as tornadoes, strong winds,
and hail; however, work in determining this correlation
has been rather limited. Past works attempting to
determine such this correlation include: Desrochers and
Donaldson 1992 and Marzban et al. 1999. Most of these
works have looked at rather limited sample sizes due to
the manual mesocyclone-tornado correlation technique
used and the necessity of using high-resolution (level II)
radar data from tape archives. Other works (including
Mitchell et al. 2000) attempting to find a correlation
using large data sets only look at the presence or lack
thereof of a mesocyclone detection in association with a
tornado track.

The initial focus of the work reported here is on
resolving the correlation between tornado reports (or
lack thereof) and mesocyclone detections with their
associated attributes using several statistical
procedures. This correlation is being determined using a
climatological perspective rather than a small-scale,
case-by-case perspective used previously. The eventual
goal is to demonstrate the practicality and usefulness of
a mesocyclone climatology based on the MDA.

2. METHODOLOGY

Level II data were collected from six radars in the
Southern Plains: KAMA, KFWS, KINX, KLBB, KSRX,
and KTLX (for locations, see map in Fig. 1),
which are the initial radars associated with the CRAFT
project. Since full- time recording of data
for this project began in 2001, the 2000 data set is
incomplete and event specific. For this work,
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approximately 360 hours of level II data during 2000
was processed from each radar. While this by no means
represents a complete convective climatology for 2000
for this region, it can serve the purpose of a test-bed for
verification techniques to be employed in future
analyses.

Figure 1. Map showing the locations of the six radars
used in this research and the 15,379 mesocyclone
detections remaining after filtering of the 2000 level II
data. Note the bulls-eye of detections around KFWS, an
example of a radar-specific artifact.

The methodology of this work differs from the
previously mentioned studies and overcomes some
significant difficulties. First, there are several known
problems with the MDA and its ability to detect storm
scale vortices. Many of these are a result of radar beam
geometry (Stumpf et al. 1998, Mitchell et al. 2000).
Other problems involve velocity errors especially
apparent at certain ranges given specific combinations
of Volume Coverage Patterns (VCPs) and Pulse
Repetition Frequencies (PRFs) that may lead to a
significant number of anomalous detections. Dealiasing
can also lead to the false indication of mesocyclones in
ground clutter. Mesocyclones that are detected due to
dealiasing problems are often ranked as strong. To
address these problems, a filtering technique has been
developed that eliminates many of these false
detections while only slightly impacting the quality of
"true" detections. This filter attempts to correlate
mesocyclone detections with storm cell detections
produced by the Storm Cell Identification and Tracking
(SCIT) algorithm using a predefined search radius (12
km in this case) (Johnson et al. 1998). Mesocyclone
detections that cannot be associated with a storm cell
were removed from the mesocyclone data set. For more



details on this filtering, see the companion paper 5.4 by
McGrath et al.

For this research, each mesocyclone detection is
defined as a singular, independent event in time and
space with unique attributes. The algorithm’s ability to
track a mesocyclone from one volume scan to the next
is rather limited, so no attempt was made to combine
individual mesocyclone detections into mesocyclone
tracks. In addition no attempt was made to combine
detections of the same mesocyclone from multiple
radars.

The filtered data set was ingested into a GIS
environment to produce a display of mesocyclone
detections. These were then compared with ground-
truth tornado tracks for the corresponding event
acquired from the Storm Prediction Center (SPC)
database. For simplicity, any curvature in a tornado path
was ignored. The problems with the SPC database are
well known and will not be discussed here, but quality
control of these data has been of great importance for
this work (Witt et al. 1998). To account for temporal and
spatial errors in the location given for a specific tornado,
all mesocyclones within the spatial and temporal
window surrounding a tornadic event were tagged as
being associated with that tornadic event (Witt et al.
1998). This “windowing” technique also takes into
account small location errors inherent in MDA’s
detection coordinates. This procedure is used in place
of earlier techniques that attempted to correlate a single
mesocyclone detection with a tornado when in fact more
than one may be significant (Stumpf et al. 1998). Also,
earlier works analyzed the radar data manually to
determine tornado-mesocyclone relationships. This is
not practical for the large-scale, climatological analyses
that will be attempted in the future. The techniques
proposed by this work also have the advantage of being
much more objective than previous techniques by
minimizing the human element in the verification
process.

The spatial window used was a search radius of 10
km from the tornado track to search for mesocyclone
detections. The temporal window chosen for this
analysis was -20 min before to +6 min after a tornado
report to search for mesocyclone detections that pass
the spatial test (Witt et al. 1998).

A unique aspect of this method is that it allows for
the combination of the MDA output from multiple radars
into a spatial environment before a verification analysis
is undertaken. Previous works focused verification on
output from a single radar. In the interest of producing
radar climatologies, one must discard the paradigm of
only analyzing output from a single radar since
mesocyclone occurrence is not tied to a specific radar or
radar geometry. Ingesting the MDA output from multiple
radars into a GIS environment allows the spatial
analysis to be undertaken using a Cartesian coordinate
system rather than the spherical, radar-specific, system.

3. STATISTICS

Several different statistical analysis procedures
were used in determining the correlation between

mesocyclone detection attributes and tornadoes. These
statistics were used to verify the usefulness of this
mesocyclone climatology. Initially, various skill scores
were calculated using several of the raw MDA attributes.
The skill-scores being analyzed include Critical Success
Index (CSI), Heidki Skill Score (HSS), Probability of
Detection (POD), and False Alarm Rate (FAR) (Wilks
1995). In calculating these statistics, tornadoes that
cannot be associated with any mesocyclone detections
will be ignored since the skill of a mesocyclone
detection attribute cannot be determined if there is no
detection with which to begin. The skill scores were
calculated for each attribute using multiple thresholds to
determine which threshold would have the greater
forecasting potential.

As many of the attributes are highly correlated it
was decided to apply Principal Component Analysis
(PCA) to the attribute data set. Attributes that had little
predictive value, such as mesocyclone azimuth, were
removed prior to this analysis to eliminate as much
noise as possible. Using PCA it is possible to combine
multiple attributes into a single variable, which could
prove to have greater skill in forecasting tornadoes as it
combines information from multiple useful variables. To
better quantify the physical meaning of the new
variables, the loadings were rotated using the varimax
scheme in order to maximize (or minimize) attribute
correlation. Finally, skill scores were calculated again
using the “new” variables and compared with those of
the raw attributes.

4. RESULTS

After filtering of the initial mesocyclone data set,
15,379 mesocyclone detections over the six radars were
included in the preliminary 2000 mesocyclone
climatology (Fig. 1). During the dates and times for
which radar data were available, 31 tornadoes were
reported to have occurred. At least one mesocyclone
was detected for every tornado report. Also, it should be
noted that no tornadoes occurred within range of the
KAMA radar; however, detections from KAMA were kept
in the data set due to the climatological nature of this
work. Using the procedures described above to
determine tornadic mesocyclone detections, only 264
detections could be defined as tornadic. This represents
a disturbingly small number of the total number of
detections within the data set. Still, an objective analysis
of the tornadic detections seemed to indicate that often
these detections were classified as strong by the MDA
while most of the non-tornadic mesocyclones were
classified as being weaker, as expected.

To quantify the objective analysis, the skill scores of
several MDA-derived mesocyclone attributes were
calculated. The attributes chosen were Mesocyclone
Strength Index (MSI), Neural Network probability of a
Tornado (NNT), mesocyclone Depth, and Low Level
mesocyclone Diameter (LLDia). Of these attributes, MSI
proved to have by far the greatest skill at distinguishing
between tornadic and non-tornadic mesocyclones (Fig.
2). However, even the skill of MSI is very limited with a
maximum HSS of only 0.17 associated with an



alarmingly high FAR of nearly 0.85 and low POD of 0.3.
The next best attribute, NNT, has a HSS that only
marginally exceeds 0.1 again with high FAR and low
POD. The other attributes, Depth and LLDia, show
virtually no skill at all (Fig. 2). Since these results are far
below published results of MDA attributes (Stumpf et al.
1998), it was decided to test these procedures using a
single tornadic event. (The hypothesis that the higher
skill scores in Stumpf et al. 1998 were a result of only
focusing the verification on specific tornadic cases).
Thus, four tornadic days from the 2000 data set were
chosen during which 20 tornadoes were detected. Using
this limited data set, the HSS for MSI improved to a
maximum of 0.27 with improved values for POD and
FAR (Fig. 3). Still, this is not great, but is more in line
with the results reported by Stumpf et al. (1998) and
verifies that the procedures used in this work are indeed
valid.

To improve the skill of the MDA attributes in the
climatological data set, it was decided to attempt PCA
on the MDA attributes in order to generate a reduced
number of independent variables with which to work.
This analysis resulted in one variable in particular that
included information from most of the velocity derived
attributes while remaining independent of attributes
such as mesocyclone Depth and Range. Determining
the skill of this new variable revealed that combining the
velocity information into a single variable improved the
skill of using MDA information as a predictor for
tornadoes. However, this improvement over MSI was
only slight increasing HSS by 0.03 (Figs. 2 and 3). Still,
this improvement was seen using several different
rotation methods and thresholds during the process of
PCA. Thus, it appears that this improvement in skill,
though small, is real and worthy of future exploration.
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Figure 2. Skill scores for selected mesocyclone detection attributes. Note the very high FAR values associated with
all the attributes at most threshold levels. Using HSS as a guide, it is apparent that MSI is the attribute with the best
skill and NNTorn second. Mesocyclone Depth and LLDia show virtually no skill at predicting tornadoes. The result for
LLDia is somewhat surprising given that many believe that a tightening of the low-level circulation is associated with a
tornado.
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Figure 3. Left is a plot of the skill scores for MSI during the March test case. Note that CSI and HSS are significantly
higher and FAR lower than in the climatological case. Right are the skill scores associated with the new variable
produced during the PCA of the climatological data set. Compare with MSI in Figure 2 and note that HSS and POD
are improved somewhat.

5. CONCLUSIONS AND FUTURE RESEARCH

An analysis that parallels that reported here is
underway using the 2001 level II data from the same six
radars. The 2001 data set represents a much more
complete collection of all the convective events for the
year, so it is hoped that analysis of it will provide more
definitive results than those given here. In addition, it is
hoped to break up the 2001 data by seasons to
determine if the tornado predictive skill of the
mesocyclone attribute varies with each season. Finally,
the large 2001 data set will be used as a basis for
creating non-linear models relating tornado occurrence
to several attributes while using the 2000 data set as an
independent test set.

Still, the process of creating a representative
mesocyclone climatology has proven quite challenging.
Many of the difficulties appear due to shortcomings in
the current realization of the MDA. An example is the
numerous false detections found around 147 km. Post-
processing of the algorithm output with filtering and PCA
significantly increases the correlation between tornado
occurrence and mesocyclone attributes; however, the
increases do not approach the level necessary to utilize
the mesocyclone climatology for additional research of
the type presented here. It is hoped that the next
realization of the MDA will address many of these
shortcomings. Once this is done, it may be possible to
achieve significantly better results using techniques
such as those described above.

Finally, it is hoped to continue this process using
different WSR-88D algorithms and different verification
techniques. One such future possibility is an algorithm
currently in development that can combine velocity
information from multiple WSR-88D radars to produce a
mesocyclone detection. This multi-radar approach
would remove many of the radar-specific issues
associated with the current method of assembling a
mesocyclone climatology and could significantly
improve its usefulness.
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