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1. INTRODUCTION

Experience with models and schemes for represent-
ing the effects of the unresolved motions in large-eddy
simulations (LES) suggests that the near-wall and main
flow domains require quite different treatments. Virtually
all schemes make some special provisions for the near-
wall representations. This is especially important when
modeling field-scale flows, as the limited grid resolution
throughout the domain places extra importance on the
quality of the turbulence closure scheme.

A well-known problem in LES is the lack of agreement
with logarithmic theory in the near-wall region. The goal
of this work was to learn what logical steps and proce-
dures are required for subfilter-scale (SFS) modeling to
bring the simulated flow fields into agreement with the-
oretical expectations in the near-wall region. We exam-
ined a specific test case: the neutral, rotation-influenced,
rough-wall, field-scale boundary-layer flow considered by
Andren et al. (1994). A standard atmospheric mesoscale
simulation code is used, namely, the Advanced Regional
Prediction System (ARPS). Because this is a finite vol-
ume LES code for irregular terrain, spectral methods and
sharp Fourier cutoffs in filters are not viable options. The
only major modifications to the code are those associ-
ated with the new subfilter-scale models we have imple-
mented.

The closure model implemented includes the series-
expansion subfilter-scale turbulence model of Katopodes
et al. (2000a,b). A priori tests for stratified homogeneous
shear flow showed that the series model is superior to
eddy viscosity models, as the series model has signifi-
cantly improved correlations and ratios when compared
to DNS values. However, when applied to this rough-
wall boundary layer flow simulation, the series model re-
quires augmentation. To better represent the near-wall
region, we have adopted a hybrid approach. The series
and Smagorinksy models are used in conjunction with
the near-wall canopy stress term of Brown et al. (2001).
Neutral boundary layer simulation tests show significantly
improved results: the logarithmic velocity layer near the
lower boundary is more closely reproduced, as compared
to results with standard closure models.

In this paper, we present the framework for construc-
tion of a hybrid, or mixed, LES closure model. We then
describe the implementation of this model and results
from LES simulations of the neutral boundary layer, and
close with a summary.

2. SFS AND SGS MOTIONS

ARPS employs spatially filtered compressible nonhy-
drostatic Navier-Stokes equations. For this paper, ARPS
was operated in an incompressible mode (Xu et al. 1996).
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Using Favre filtering to separate the density from the ve-
locity, we define the SFS stress as

τij = uiuj − uiuj , (1)

where ui are the filtered velocity components. The filtered
equations are not closed due to the nonlinear term uiuj

included in τij .
To facilitate our understanding of this stress tensor and

to improve turbulence models in the near wall region, it
is useful to consider velocity partitioning schemes such
as those of Carati et al. (2001), Zhou et al. (2001), and
Hughes et al. (2001), and the spectral analysis of van
Dijk and Duynkerke (2002). Figure 1 shows a schematic
of a typical energy spectrum from a turbulent flow. The
spectrum can be separated into three parts. The low
wavenumber portion is well-resolved on the grid, and is
contained in the velocity u. The middle portion represents
subfilter-scale motions that are between the filter and grid
cutoffs. The last portion on the right contains subgrid-
scale motions that cannot be resolved on the grid.

Following Carati et al. (2001), this velocity partition-
ing results in a decomposition for the LES stress ten-
sor τij = τA,ij + τB,ij . The subgrid-scale (SGS) stress
portion τA,ij depends on scales beyond the resolution
domain of the LES, while the filtered-scale stress por-
tion τB,ij depends on the differences between the exact
and filtered velocity fields within the resolution domain,
which we call subfilter-scale motions. This partitioning
requires that the filter width be larger than the grid spac-
ing. Note that in a continuous domain, τA,ij is zero, since
there would be no contribution from subgrid-scale effects.
The subfilter-scale component, τB,ij , can theoretically be
computed and does not need to be modeled; an infinite
expansion in a series model for τB,ij would give the exact
solution in this case. In a discrete domain, the contribu-
tion of τij , and thus τA,ij , increases with decreasing grid
resolution. Near the wall, the τA,ij terms become increas-
ingly important.

3. CLOSURE MODELS

Using this framework for the turbulence closure, we
can construct models for each component separately.
For τA,ij , we have examined, among others, multi-scale
Smagorinsky models (Hughes et al. 2001) and the effect
of the 4th-order numerical smoothing employed in ARPS
to remove high-frequency noise and aliasing (which was
not found to be significant). The small-scale Smagorin-
sky model was limited by discretization errors in the large
scale flow we are considering, and did not perform well.
Therefore, to model the unclosed term, τA,ij , a simple
gradient diffusion form is assumed:

τA,ij = −2νT Sij , (2)

where νT is the eddy viscosity, and Sij is the resolved
strain rate tensor. Despite the known shortcomings of this
model, it is convenient to use when energy transfer to the
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Figure 1: Schematic of velocity energy spectrum show-
ing partitioning into resolved, subfilter-scale, and subgrid-
scale modtions. The grid and filter cutoff lines are shown
as a smooth filter function.

subgrid scales is desired. A common treatment in LES is
to use the Smagorinsky model (1963), which assumes

νT = (CS∆g)2(2SijSij)
1/2 , (3)

where CS is the Smagorinsky coefficient, and ∆g is the
grid spacing. Such gradient diffusion models are often
applied to represent the entire stress tensor τij , whereas
here we apply the Smagorinsky model as part of a mixed
model, so its contribution will not be as pronounced (see
Zang et al. 1993).

For the stress term τB,ij , which can be expressed in
terms of the resolved velocity, we have implemented the
series model of Katopodes et al. (2000a), a task for which
it is ideally suited. In the spirit of velocity estimation mod-
els (Geurts 1997, Domaradzki and Saiki 1997, Stolz and
Adams 1999), the series model seeks to obtain an ap-
proximate expression for the unresolved variables and
use these to calculate the SFS motions. This model uses
successive inversion of a Taylor series expansion to ex-
press the unfiltered velocity in terms of the filtered (re-
solved) velocity. We then derive SFS models of arbitrary
order of accuracy in the filter width, ∆f , shown here to
fourth order:

τij = uiuj − uiuj −
∆2

f
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The first two terms are analogous to the Leonard terms in
the SFS stress; the higher order derivative terms can be
shown to be dissipative (Clark et al. 1977). An anisotropic
Gaussian filter is used, though an isotropic filter ∆f is
shown here for simplicity (see Katopodes et al. (2000a)
for further details). Other spatially compact filters give
similar results, with a change in the expansion coeffi-
cients. It is important that the filter width be at least
twice the size of the grid spacing, otherwise discretiza-
tion errors will be as large as the effect of the SFS model
(Ghosal 1996, Chow and Moin 2002). The series mod-
els also satisfy the full evolution equation for τij meaning
that the effects of buoyancy, Coriolis forcing, pressure,
and advection are naturally included in the model and do
not need special treatment (Katopodes et al. 2000a).

This series model can be rewritten as

τij =
∆2

f

12

∂ui

∂xm

∂uj

∂xm
, (5)

which is equivalent to equation (4) to the fourth order in
the filter width (Katopodes et al. 2000a). Equation 4 is
similar to the model proposed by Clark et al. (1977). This
modified Clark model is considerably simpler than equa-
tion (4) to implement numerically, so we adopt this as our
model for τB,ij . This model has been used in a chan-
nel flow by Fischer and Iliescu (2001) to represent the
entire turbulence term with good results. Winckelmans
et al. (2001) performed a channel flow simulation using
the modified Clark model together with the Smagorinsky
model, as we do. However, both of these studies consid-
ered small-scale flow cases where viscous motions could
be resolved near the wall, which is not possible in the
atmospheric boundary layer. Vreman et al. (1996) also
found that a mixed model with the original Clark model
performed well for a small-scale temporal mixing layer.

Because of the resolution limitations present when
simulating a field-scale flow, the turbulence model re-
quires special treatment near the lower boundary which
is rough. This mixed model using equations (2,3) and (5)
has limitations near the solid lower boundary, where eddy
sizes decrease much more rapidly than the grid spacing.
Because the vertical grid-spacings are invariably smaller
than the horizontal ones, 2 ∗ dx is the minimum vertical
distance from the wall for eddies of the horizontal grid
size to be resolved. This lack of resolution means that
an additional stress term may be needed near the wall to
represent these motions. Thus, in this near-wall region,
such augmentation of the stress models is appropriate.
Following Brown et al. (2001) and Cederwall and Street
(2002), we implement a canopy stress model near the
wall.

The canopy model can be expressed as a forcing term
in the horizontal momentum equations as −Cca(z)|u|ui

where i = 1, 2. Here Cc is a scaling factor and a(z)
is a constant smoothing function which are both pre-
determined. Following Brown et al. (2001), we choose
a = cos2(πz/2hc) for z < hc, where hc is the canopy
height. Above the canopy, we set a = 0. This function
a(z) allows for a smooth decay of the forcing canopy func-
tion as the specified canopy height is approached.

In the code, the canopy force is treated as part of
the turbulence closure stress term, and therefore is in-
tegrated numerically using the trapezoidal rule from

τi,can = −

∫

Cca(z)|u|uidz , (6)

where the integration constants are chosen so that
τi,can = 0 at the top of the canopy. This stress is then
directly added to the τi3 terms contributed from the other
model components. Brown et al. (2001) choose a con-
stant value for Cc so that the velocity at the top of the
canopy matches that from experimental measurements.
Cederwall (2001) selected Cc such that the canopy model
augmented the total stress at the first grid point above the
wall to make it equal to the local bottom shear stress. In-
stead we allow Cc to be locally proportional to the bottom
shear stress in each horizontal direction. The proportion-
ality factor is chosen to allow the canopy to provide the
necessary augmentation that will yield logarithmic mean
velocity profiles near the wall.

4. NEUTRAL BOUNDARY LAYER SIMULATIONS

To test the performance of the closure models, we use
the ARPS code to simulate a neutral boundary layer flow



case similar to that of Andren et al. (1994). ARPS was de-
veloped and tested at the Center for Analysis and Predic-
tion of Storms at the University of Oklahama over the last
decade. Details on the ARPS code can be found in Xue
et al. (2001). The equations have been slightly modified
to make them closer to the incompressible case studied
by Andren et al. (1994), as detailed in Xu et al. (1996).

The no-slip condition cannot be applied at the bottom
boundary in atmospheric boundary layer simulations be-
cause the surface is rough. Hence, the top and bottom
boundaries are treated as rigid or free-slip boundaries,
and surface fluxes are parameterized to account for the
influence of the rough bottom surface. The ARPS code
parameterizes the momentum fluxes at the surface using
a logarithmic drag law (with stability-dependent similarity
options).

The flow is driven by a constant geostrophic pres-
sure gradient which would balance a geostrophic wind of
(Ug, Vg) = (10, 0)m/s. The Coriolis parameter, f , is set
equal to 9 × 10−5. The bottom roughness is set to 0.1m.
At the lateral boundaries, periodic conditions are used for
this idealized flat-terrain study. This configuration results
in an Ekman-like spiral for the mean velocities. The grid
size is 40×40×40 with grid spacings of 32m×32m in the
horizontal. In the vertical, a stretched grid is used, with
8m spacing near the bottom and up to 104m near the top
of the domain, giving an average spacing of 37.5m. The
anisotropic filter for the modified Clark model was applied
at twice the grid spacing, in computational space. Simula-
tions were run for 100000s (approximately 10 inertial time
periods, tf ) with a 0.5s large timestep, and 0.05s small
timestep.

The mean velocity profile is expected to be logarith-
mic in the lowest region of the boundary layer, as can
be shown from similarity theory (Blackadar and Tennekes
1968). As noted by Andren et al. (1994), one of the many
short-comings of the widely-used eddy viscosity models
is their failure to produce logarithmic profiles. Such errors
near the wall can affect the entire flow solution. A conve-
nient measure of the model’s performance in this respect
is the non-dimensional velocity gradient, Φ, which is de-
fined as

Φ =
κz

u∗

√

(

∂ < u >

∂z

)2

+
(

∂ < v >

∂z

)2

. (7)

Here κ is the von Kármán constant, chosen to be 0.4; u∗

is the surface friction velocity defined by u∗ = (uw2
0 +

vw2
0)

1/4, where uw0 and vw0 are the total stresses at
the lower boundary. For the parameters chosen, u∗ is
found to be approximately 0.4. In a logarithmic region,
Φ = 1, which we expect for approximately the first 200m
above the wall. Vertical profiles are averaged horizontally
in space (denoted by the brackets <>), as well as in time
over the last 20000s of the simulation, using data taken at
1000s intervals.

Stress profiles for uw are shown in Figure 2 where
the contribution of each component in the closure model
can be seen. The total stress is approximately linear,
as expected in a boundary layer flow. The stress pro-
files are also shown on a log plot to magnify the region
near the wall. The influence of the canopy model de-
creases as the canopy top is approached, which is se-
lected to be 4 ∗ dx (128m), or equivalent to the minimum
well-resolved horizontal eddy size beneath the filter. We
obtain good results when we choose the canopy coeffi-
cient Cc so that the canopy model contributes an amount
equal to half the wall stress at the first grid point above

the wall. We also apply damping to the canopy model us-
ing (1− exp(−z/d))2 (with d = 15m) very near the wall to
slightly reduce the canopy effect there as it was found to
be too large. The Smagorinsky coefficient is chosen as
CS = 0.21, the standard value used in the ARPS code.
The modified Clark term decays to zero naturally at the
wall in the presence of the other two model components.

Profiles of Φ are shown in Figure 3. We compare our
results with the hybrid closure model to those using the
standard Smagorinsky eddy viscosity model. We see
that the overshoot in the value of Φ reaches 1.8 for the
traditional Smagorinsky model, indicating the model pro-
vides excessive shear near the surface. When the modi-
fied Clark, canopy, and Smagorinsky models are used to-
gether, the overshoot in the value of Φ near the wall from
the Smagorinsky model is compensated by the designed
tendency for the canopy model to produce Φ values less
than unity. In addition, the modified Clark component is of
scale-similar form, and thus allows backscatter, or energy
flux from the small to the large scales. This is believed
to be especially important when the large scales are not
fully resolved in the atmospheric boundary layer (Mason
and Thomson 1992), and aids in achieving a logarithmic
mean velocity profile. Except for at the lowest point, val-
ues of Φ within 0.2 of the ideal are obtained using the hy-
brid model, which represents a significant improvement.
With a subset of only one or two components of this hy-
brid model (e.g.,Smagorinsky and series models without
the canopy), the results are not as good.

5. CONCLUSIONS

Our conclusion is that the context provided by Carati et
al. (2001), is useful and leads to insights about model be-
havior. We are able to achieve improved non-dimensional
shear Φ profiles by a systematic use of the models cited
above. We have found that when applied to simulations
of the atmospheric boundary layer, the SFS series model
(Katopodes et al. 2000a,b) needs augmentation because
of finite grid resolution, and further special treatment at
the lower rough boundary. The Smagorinsky model has
been used to provide necessary dissipation, without in-
curring the expected drawbacks of this model as it is used
in conjunction with a scale-similarity model. Near the
earth’s surface, resolution is generally not adequate to
resolve many of the turbulent motions and a supplemen-
tal model such as the canopy model improves the results.
Further work is required for a careful assessment of the
canopy model, as a more robust selection process for the
coefficients in this model is desired.
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