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1. INTRODUCTION
A number of observed phenomena have motivated

studies on the stability of intense atmospheric vortices.
For tornadoes, these would include the multiple vortex
and vortex breakdown phenomena. The multiple vortex
phenomenon refers to the occasional appearance of
smaller vortices within the larger tornadic vortex core as
first hypothesized by Fujita (1971). The wind field devia-
tions associated with asymmetries and/or smaller-scale
vortices in the core of a tornado have recently been
observed directly with portable Doppler radar (Bluestein
and Pazmany, 2000). A vortex breakdown structure is
also sometimes observed in tornadoes, with a nearly
laminar, supercritical flow near the surface, and turbu-
lent, subcritical flow aloft (Lugt, 1989).

A number of studies have identified dynamical insta-
bilities associated with the radial shears of the azimuthal
and vertical winds as the likely cause for these phenom-
ena (e.g., Rotunno, 1978; Gall, 1983; Staley and Gall,
1984). Walko and Gall (1984) extended their stability
analyses to allow for the arbitrary variation of both the
basic-state flow and the perturbations with height.
Unstable modes were found for an axisymmetric vortex
generated in a simplified axisymmetric model, with
higher azimuthal wavenumbers and more barotropic
(i.e., two-dimensional) dynamics prevailing as the swirl
ratio was increased.

Motivated by observations of similar phenomena in
intense hurricanes, the authors have extended this type
of analysis to include the effects of temperature, stratifi-
cation, and density variations (Nolan and Montgomery,
2002a). Our approach is also more versatile, in that our
modes are computed from the eigenvectors of a linear
dynamical system, rather than by examining the linear-
ized evolution of random initial perturbations, i.e., all
modes, unstable or otherwise, are identified simulta-
neously. Furthermore, Walko and Gall (1984) used a
basic-state without a swirling boundary layer, the pres-
ence of which is known to be crucial in determining the
structure of the flow in the inner core of all tornado-like
vortices (Rotunno, 1979; Nolan and Farrell, 1999). Thus
we return to the problem of fully three-dimensional

unstable modes in tornado-like vortices.

2. BASIC STATE VORTEX
A tornado-like basic-state is generated from a sim-

ple numerical model of tornadogenesis: axisymmetric
simulation of incompressible fluid in solid-body rotation,
forced to converge by a fixed vertical forcing field at the
center of the domain. Such vortices have been studied
extensively and are known to reproduce many of the
observed features and behaviors of actual tornadoes
(Fiedler, 1993; Nolan and Farrell, 1999). The model
parameters have been chosen to produce a “drowned
vortex jump,” as shown in Fig. 1. The variables are nondi-
mensional, with a background rotation rate Ω=0.2, a con-
stant eddy viscosity ν=0.0005, and a convective velocity
scale U=1.0. The fields are averaged over a suitable
period of time so as to smooth out any transient features.

3. THE ASYMMETRIC TORNADO-HURRICANE
EQUATIONS

Due to space limitations, we cannot provide a com-
plete analysis of the equations, but we will instead
describe the general approach; details are available in
Nolan and Montgomery (2002a). We start with the
anelastic momentum equations for dry adiabatic motions
in cylindrical coordinates. These are comprised of the
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Figure 1: Basic-state tornado-like vortex, with
secondary circulation. Structure of
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              the stretched grid is also shown.



momentum equations for the radial (u), azimuthal (v),
and vertical winds (w), the conservation of potential tem-
perature (θ), and the anelastic (density weighted) incom-
pressibility condition. For the puposes of generality, the
effects of temperature and density variations and the
earth’s rotation are included in the present exposition.
The equations are linearized for small perturbations
about the basic-state flow, and these perturbations are
assumed to have the form

, (1)

such that all variables vary exponentially in the azimuthal
direction for some wavenumber n, but may have arbitrary
structure in time and in the radial and vertical directions.
After linearization and substitution for the perturbation
variables in the form of (1), we have:

, (2)

, (3)

, (4)

, (5)

, (6)

where g is the gravitational acceleration, f is the Coriolis
parameter, is the (fixed) anelastic density field, pn is
the perturbation pressure, is the basic-state
angular velocity, and the basic-state material derivative
is

. (7)

We refer to (2)-(7) as the asymmetric tornado-hurricane
equations. Since hurricanes can be represented to first
order as a vortex in gradient wind and hydrostatic bal-
ance, with no secondary circulation, we call these equa-
tions with the asymmetric
hurricane equations. Alternatively, since the dynamics of
tornadoes are represented accurately by an incompress-
ible vortex driven by overhead convection, we shall call
the equations with constant, and (5) neglected,
the asymmetric tornado equations. Diffusion terms have
been omitted for brevity, but are included in the equa-
tions.

Observe that there are no derivatives operating on
vn in (6), such that vn can be eliminated in favor of un and
wn. The same applies for pn in (3), and thus pn may also
be eliminated. Through various manipulations we are left
with three coupled, linear equations for un, wn, and θn.
Note that this approach cannot be used for n=0; in this
case, pn may be eliminated through the use of a stream-
function ψn, leading to three equations for ψn, vn, and θn.

Symmetric dynamics and instability will be discussed in
future work (Nolan and Montgomery, 2002b).

4. NUMERICAL SOLUTION
Through standard techniques, the asymmetric tor-

nado equations are discretized into the linear dynamical
system

, (8)

where x is a column vector whose elements contain the
values of each of un and wn at each gridpoint. The
modes of the system are the eigenvectors of A.

Some practical difficulty lies in the size of the matrix
A. The domain needs to be large enough so that the
outer boundary does not overly influence the inner-core
modes. Using a regularly spaced grid, one might need
as much as 100 points in each of the radial and vertical
directions for sufficient resolution of the inner-core flow
shown in Fig. 1. The size of A would then be on the
order of 20000x20000. To overcome this difficulty we use
grids that are stretched in both the radial and vertical
directions, such that a large number of gridpoints are
packed into the lower levels of the inner core of the vor-
tex. For the calculations presented here, the grid has an
Arakawa C structure with 40x40 points, with minimum
grid spacings of 0.011 in the corner flow region, stretch-
ing to 4 times larger in the far-field. The shape of the
grid, but with only 20x20 points, is also shown in Fig. 1
by the locations of the flow vectors.

5. UNSTABLE MODES IN TORNADO-LIKE
VORTICES

For our analysis of the vortex in Fig. 1, we use the
asymmetric tornado equations with no-slip boundary
conditions at the lower surface, f = 0, and a constant ρ =
1. The viscosity is the same as that used in the axisym-
metric model that generated the basic-state. Also incor-
porated into the dynamics are damping regions near the
upper and outer boundaries, aka “sponges,” which sup-
press instabilities in the inertially unstable outflow layer,
so that we may focus on the inner-core dynamics of the
vortex.

The growth rates of the most unstable modes in the
core of the tornado-like vortex are shown in Fig. 2 (cir-
cles). Robustly unstable modes are found for n=1 and
n=2, with e-folding times of 6.75 and 3.58, respectively,
(compared to a vortex circulation time of 2.2). The struc-
ture of the n = 2 unstable mode is shown in Fig. 3, in
terms of the magnitude of the perturbation azimuthal
velocity in the r-z plane, and horizontal cross-sections of
the vertical vorticity and velocity at z = 0.29. The mode is
normalized to have maximum un = 1.0. The mode has a
vorticity structure somewhat similar to modes associated
with changes in sign of the basic-state vertical vorticity
gradient, discussed by Michaelke and Timme (1967) and
Schubert et al. (1999), but it also has large vertical veloc-
ity perturbations and its vertical structure changes signif-
icantly with height (not shown).

In previous work, considerable attention has been
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given towards determining whether these modes owe
their existence to the radial or vertical shears of the azi-
muthal or vertical winds. A budget equation for the pro-
duction of perturbation kinetic energy may be used for
this purpose, where

(9)

[see, e.g., Walko and Gall (1984), except for a correction
to their term 3]. The terms are labelled according to the
wind field and direction of momentum transport they rep-
resent. The three dominant sources of KE for the most
unstable mode are shown in Fig. 4, which are the wr, wz,
and vz terms, with 0.016, 0.0087, and 0.0038 units of KE
production, respectively. Remarkably, the vr term, asso-
ciated with barotropic instability, comes in fourth place
with 0.0025 units, though its largest local values are
twice those of the vz term (not shown). The ur and uz
terms contribute 0.0021 and -0.00011 units, respectively.

The stability of the 3D, axisymmetric vortex may
also be compared to similar vortices which do not vary
with height. For this purpose, vertically periodic vortices
were constructed with the same v(r) and w(r) profiles as
the tornado-like vortex at heights where the unstable
mode is particularly active, z = 0.225 and z = 0.375. The
same numerical model is used, but with vertically peri-
odic boundary conditions. While this forces the vertical

wavelengths of the modes to be either 1, 1/2, 1/3, etc.,
calculations with varying vertical domain sizes gave sim-
ilar results. Stability curves for the two vertically periodic
vortices are shown in Fig. 2. The periodic vortices are
more unstable and have most unstable modes for n = 3
and are also unstable for higher wavenumbers. All the
most unstable modes have vertical wavenumbers of
either 1 or 2 (relative to the vertical domain size, 1.0),
with the higher vertical wavenumber preferred for the
higher azimuthal wavenumbers. Also shown are calcula-
tions for vortices using v(r) only. These vortices are
much less unstable, consistent with the findings of the
energy production calculations.

We are left with the question as to why the tornado-
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Figure 2: Stability diagram for tornado-like vortices:
              o: tornado-like vortex shown in Fig. 1;
              +: vertically periodic vortex with v and w
              profiles from z = 0.225; x: periodic vortex
              with v and w profiles from z = 0.375;
              tri: periodic vortex with v profile (only) from

z = 0.225; sq: periodic vortex with v profile
              from z = 0.375.

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

r

z

abs[v
n
], n=2 max=9.89e−01, min=4.07e−07, int=1.10e−01

−0.25 −0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2 0.25
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

x

y

vort
n
, n=2, z=2.92e−01, max=4.87e+01, min=−4.87e+01, int=8.85e+00

−0.25 −0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2 0.25
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

x

y

w
n
, n=2, z=2.92e−01, max=1.22e+00, min=−1.22e+00, int=2.21e−01

Figure 3: The most unstable mode for the tornado-
              like vortex: a) complex magnitude of vn;
              b) horizontal slice of the vertical vorticity;
              c) horizontal slice of the vertical velocity.
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like vortex is considerably less unstable than its vertically
periodic counterparts. The answer is undoubtedly
strongly related to the fact that the most unstable vertical
wavelengths are comparable to the distance over which
the vortex maintains significant radial shears of the azi-
muthal and vertical winds. Below this region, there is the
swirling boundary layer, and above, the vortex expands
and weakens. Vertical propagation also plays a role:
higher wavenumber modes generally have lower phase
and group speeds, and thus are not able to propagate
downwards fast enough to stay in the unstable region.

6. DISCUSSION
We have extended atmospheric vortex stability anal-

ysis to the problem of three-dimensional, asymmetric
dynamics of tornado-like vortices and their strong sec-

ondary circulations. We find that robust instabilities are
present in these vortices, whose existence appear to rely
most strongly on the radial shear of the vertical wind.
Comparisons to vertically periodic vortices, and previous
results for vortices without boundary layers (Walko and
Gall, 1984), indicate that strong vertical advection may
prohibit higher-wavenumber instabilities. This demon-
strates the importance of resolving the boundary layer,
which contributes greatly to the mass flux of the axial
flow. Instabilities in higher-swirl vortices will be studied in
the future.
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Figure 4: Kinetic eddy production for the most
unstable mode: a) wr temr; b) wz term;
c) vz term; see text for explanation.
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