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1. Introduction

Surface-layer in-situ observations represent a rich, ac-
curate, and often dense data source, but they are gener-
ally under-utilized in current operational data assimila-
tion (DA) systems because of the complex interactions
between the surface and the atmosphere aloft. In addi-
tion, when precipitation is absent and the winds are light,
limiting the utility of radar, surface (screen-height) ob-
servations are often the only reliable data source in the
PBL. Representing the structure of the planetary bound-
ary layer (PBL) accurately in a mesoscale NWP model
initialization could lead to improved short-range fore-
casts of convective outbreaks, slope flows, and frontal
propagation. When a mesoscale NWP model is used as
a tool to generate 3-D datasets for process studies, an ac-
curate representation of the PBL would also be valuable.

Studies have shown that a Newtonian relaxation
(nudging) approach can often lead to a better represen-
tation of the PBL (e.g. Stauffer et al. 1991; Miller and
Benjamin 1992; Fast 1995; Leidner et al. 2001). These
results rely on imposing an assumed PBL structure that
matches both the observation and the free atmosphere
aloft. The approach accounts for the bulk properties of
the PBL under different stability conditions. More so-
phisticated profile-matching techniques have been suc-
cessful when combined with an incremental update DA
system (Ruggiero et al. 1996). To our knowledge, nei-
ther PBL dynamics nor background covariance informa-
tion has been explicitly included in a PBL initialization
scheme.

This study uses an ensemble Kalman filter (ENKF;
Anderson and Anderson 1999) to simulate a screen-
height observation DA in an evolving PBL over several
days. The goal is to establish the capabilities of the
ENKF and lay the groundwork for extending the method
to parameter estimation in 3-D. The ENKF has the
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advantage that background error covariances are time-
dependent and can be highly anisotropic. In cases where
the forecast screen-height temperature is strongly corre-
lated with the structure of the rest of the PBL, the ENKF
approach should rapidly correct the entire PBL. High
correlation between screen-height temperatures and the
structure of the PBL is expected under convective con-
ditions, but experimentation is necessary to determine
whether the ENKF maintains its effectiveness over a
wide range of conditions.

2. Experiment description

To create a simple framework for PBL data assimila-
tion experiments, a perfect model is assumed. We have
adopted a PBL/land-surface parameterization scheme as
the model — chosen because it contains the minimum
physics consistent with a current NWP model and is
simple enough to elucidate the interaction between the
ENKF and the model state. A model climatology is cre-
ated that represents the “truth”. Observations are sam-
pled from the “truth”, assimilated into an ensemble of
perturbed states via the ENKF, and compared to a sim-
ple nudging scheme and an ensemble running without
assimilation. Single-layer temperature observations are
assimilated to assess the ability of the ENKF to spread
the observations through the appropriate depth.

The so-called MRF PBL scheme (Troen and Mahrt
1986; Hong and Pan 1996) is extracted from the Weather
Research and Forecasting (WRF) model so that it can
be run in 1-D with controlled forcing but no external
physics (such as pressure gradients, latent heating, and
cloud and radiation feedback). A 5-layer slab soil model
and a surface-layer similarity scheme are coupled with
the PBL diffusion scheme to create a stand-alone sys-
tem, which is forced with a diurnal solar radiation cycle.
An Earth location of 100

�

W, 35
�

N and a 0.2 cloud-cover
fraction are assumed to parameterize down-welling solar
radiation. The Stefan-Boltzmann law applied to the low-
est model level gives down-welling long-wave radiation.

A year-long integration is used to generate a model cli-



matology that defines a range of possible model states.
The solar declination angle changes with the Julian day,
creating a seasonal cycle upon which the diurnal cycle
is superimposed. The solution relaxes toward a constant
vertical wind shear of 5.0 m s

� 1 km
� 1 on a 1-day time

scale. Surface parameters are chosen to match a summer
agricultural surface as assumed in the slab soil model:
the albedo (α) is 0.17, the surface roughness (z0) is 0.15
m, emissivity (ε) is 0.92, and thermal inertia is 0.04 Cal
cm

� 2 K
� 1 s

� 1
�
2. Surface moisture content and potential

evaporation is included in one static “moisture availabil-
ity” parameter, which is specified as 0.3.

Because full physics are excluded and external feed-
back is ignored, the only nonlinearities in the system ex-
ist in the solution to the diffusion equation and therefore
nonlinear error growth is not expected. This is consis-
tent with the assertion that the state of the PBL is largely
controlled by surface fluxes and the temperature jump
between the PBL and the free atmosphere aloft (Dear-
dorff 1972). Two integrations, initialized with similar
ratios of inversion strength to surface flux and subjected
to the same forcing, will not diverge rapidly. Neverthe-
less, understanding the capability of the ENKF to verti-
cally spread screen-height information through the PBL
within a simple framework is a necessary step toward
more complex studies.

A “true” PBL state is randomly chosen from the cli-
matology, and observations are sampled from the portion
of the climatology trajectory beginning at this point. A
total of 10 cases are randomly chosen to ensure that re-
sults do not depend on the particular initialization time.
Ensembles of 50 members are generated for each case by
randomly selecting additional PBL states from the clima-
tology, and therefore the ensemble initialization and the
subsequent observations are from the same distribution.
The ensemble members are identically forced with the
solar cycle parameterized according to the Julian day of
the “truth” integration and run for 15 days. The domain
is 120 layers spaced 100 m apart, and the time step is 60
s. An example of an initial ensemble selected from the
climatological distribution is shown in Fig. 1.

Three parts to each experimental case are constructed
around the ensembles. In the first (BASE), no assimila-
tion is performed and the ensemble is allowed to evolve
on its own. Second, the ENKF is applied hourly to as-
similate layer-1 temperatures drawn from the “truth”,
to which observational noise is added. Observation er-
ror variance is set to the small value of 0.1 K. Third
(FDDA), Newtonian relaxation is applied to assimilate
layer-1 temperatures into every ensemble member inde-
pendently. The nudging parameter is 1.0 at each hour
(when the ENKF assimilation takes place), and falls
along a Gaussian curve with a standard deviation of 7.5
minutes on either side of the assimilation time. Thus in

Figure 1: An example of potential temperature (θ) pro-
files randomly selected from the climatological distribu-
tion.

FDDA, the assimilation is perfect on the hour at the ob-
servation location, and the observations are considered
perfect. In both cases, observations are assimilated be-
ginning at time t � t0 � 5 days, where t0 is the randomly-
chosen initialization time, and continuing to the end of
the integration. By assimilating layer-1 temperatures
rather than screen-height temperatures, complicated for-
ward operators are avoided in this simple experiment.

3. Results and discussion

The reduction in ensemble spread (variance) is re-
ferred to as collapse, and comparing the spread and
ensemble-mean error of ensembles ENKF and FDDA to
those of BASE gives an estimate of the effectiveness of
each assimilation system. With no assimilation, the iden-
tical solar forcing causes a slow collapse and slow error
reduction. In the ENKF and FDDA ensembles, faster
collapse and lower error may be attributed to the assim-
ilation scheme. Observation error variance will prevent
the complete collapse of the ENKF ensemble.

Figure 2 shows the slow collapse of the BASE ensem-
ble for both the whole profile (top) and the skin tem-
perature (bottom), and Fig. 3 shows the corresponding
ensemble-mean error. This can be understood in the con-
text of the linear nature of the model and the climatology.
The warmest members of the ensemble represent one cli-
matological extreme. When forced with solar radiation



Figure 2: Ensemble variance for (a) the potential temper-
ature (θ) profile, and (b) the skin temperature. Results are
averaged over 10 cases.

alone their states will not rapidly change. The system
constrains the profile from further warming, and surface
cooling leads to decoupling of the surface layer and the
residual layer, leaving most of the profile intact. The
cooler members of the ensemble approach the warmest
members on a time scale proportional to the difference
in time between the random states. Thus the BASE en-
semble collapse and corresponding ensemble-mean error
reduction is associated with the cooler states approaching
the warmer states.

The immediate collapse of the ENKF ensemble and
its error reduction are also apparent in Figs. 2 and 3.
The finite value at which the variance and rmse settles
is modulated by the assigned observation error variance.
More observational error variance results in more per-
sistent spread and higher rmse. Without nonlinear error
growth the ensemble spread remains small through sub-
sequent assimilation cycles. For example Fig. 4 shows
one case of ensemble ENKF at noon local time on day
14 (t � t0 � 14 � 5 days).

The collapse of the profiles and rmse reduction are
only slightly faster in ensemble FDDA than BASE, but
the skin temperature correction rivals the ENKF in ef-
fectiveness (Figs. 2 and 3). In the case that the layer-1
corrected temperature is cooler than the prior profile, the
surface sensible heat flux rapidly increases and the skin
temperature cools to approach the true skin temperature.

Figure 3: Ensemble mean rmse for (a) the potential tem-
perature (θ) profile, and (b) the skin temperature. Results
are averaged over 10 cases.

The down-welling long-wave radiation also reduces with
the lower temperature, causing the net long-wave radia-
tive flux to tend upward and further cool the surface.
Conversely, a warmer corrected layer-1 temperature will
allow the skin to warm by reducing its heat loss via sen-
sible heat flux and long-wave radiative flux, also tending
to correct the skin temperature.

Although the layer-1 temperature and skin tempera-
ture are quickly corrected by the close connection be-
tween them, the upward spread of information relies on
the solution to the diffusion equation. In the case when
the skin temperature is warmed, information may propa-
gate rapidly via PBL diffusion, but when the skin temper-
ature is cooled no mechanism exists to transfer informa-
tion vertically. Thus the profile collapse and ensemble-
mean rmse reduction remain slow.

These results reflect the simplest application of nudg-
ing and do not include any bulk correction of the PBL
state arising from prior knowledge of its behavior. There-
fore they do not represent the best attempts at using
relaxation techniques to assimilate screen-height obser-
vations (c.f. Stauffer et al. 1991; Miller and Benjamin
1992; Fast 1995; Ruggiero et al. 1996; Leidner et al.
2001). Conceivably, covariance estimates from the en-
semble could be used to vertically spread the effect of the
screen-height observations by nudging explicitly through
the depth of covariance structures. The results should



Figure 4: An example of potential temperature (θ) pro-
files for ensemble ENKF at time t � t0 � 14 � 5 days.

be similar to the ENKF and may be superior to profile
matching and bulk PBL adjustment because no ad-hoc
assumptions about the structure near the top of the PBL
are required. But in the ensemble framework, nudging is
superfluous because the ensemble requires the filter up-
date step to provide an estimated posterior distribution
for re-initialization.

Because of the simplifications employed, this exper-
iment does not include the full variability of the real
PBL or of a PBL simulated by a complete NWP model.
Specifically, these cases develop a mixed layer every day
and retain correlation between the surface and the resid-
ual layer every night. External dynamics would tend to
destroy the correlation between the surface and residual
layer when they are decoupled under stable situations.
In cases where destruction of the surface/residual layer
correlation occurs on time scales shorter than the assimi-
lation cycle, this approach may fail. But frequent updates
( � 1 hr) are possible with mesonet data and external forc-
ing would have to be strong to destroy the correlation
completely.

These early results show the potential of the ENKF
approach for using the assimilation of screen-height ob-
servations to correct the structure of an evolving PBL.
Clearly, the problem only becomes more difficult as the
the complexity of the dynamics increases. Because the
development of the PBL is closely linked to lower bound-
ary exchanges which may be poorly represented, model
error is another real problem for any assimilation scheme

dealing with PBL observations. Future work includes de-
veloping forward operators to relate the model state to
the observations, and extending these results to 2- and 3-
D cases within a complete NWP model. The DA cycle
will also be used to estimate uncertain parameters in the
model, thereby partially accounting for model error. Any
results available will be presented.
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