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1. INTRODUCTION

We present the formulation of a fully compressible,
nonhydrostatic hybrid {-coordinate model in a vertically
two-dimensional (x,{) framework. This model is a 2D
Eulerian, time-explicit analog of the 3D semi-implicit
semi-Lagrangian hybrid coordinate model (Purser et al.
2002), being developed as a contribution to the multi-
institution Weather Research and Forecasting (WRF)
initiative.

2. MODEL FORMULATION

2.1 Continuous equations

There are six prognostic variables, viz., the three
wind components u, v, and w; the potential temperature
0, the geopotential ¢, and the modified density m2. In flux
form, the governing equations are written as:

0,U = ~0s(VU)+ fV ~m(d M -0 _B)

+ OZD 0.Q+mF,_, (1)
oV = 7D-(\A/V)—fU+mI;, )
0, = ~DOe(VIW) - g0y 0 +mF,, 3
9,0 = —O+(vO) +mQ/ 1, (4)
0.0 = —Oe(v®) + g, (5)
o,m = —Oe(vm), (6)
where the prognostic variables are density-weighted:
(U, V,W,0,®) = m(u,v,w, 6,9), (7
and the divergence term D-(\A/W) :

Do (VW) = 0, (u¥) + 9, ({W), ®)
where | is arbitrary. With the total air density p:
p=m(0,9) . ©)

the total pressure p:
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p = pol(Rp8)/ pylY, (10)
and the Exner function M:

K
N =2C,(p/py) s (11)

where p,, is a constant reference pressure.

With the hydrostatic pressure, p, defined by
aZﬁ = —-m, (12)

the nonhydrostatic-pressure deviation, [1 , that appear

in (1) and (3) is given by

O =p-p. (13)
The Montgomery stream function, M =@+00,

which appears in (1) and (3) is diagnosed from

0 M = I'IGZ9+p716ZD , (14)

using vertical integration, subject to a lower boundary
condition on M. Note in above equations, the partial
derivatives wrt x and ¢ are taken over constant { sur-
faces. The F terms in momentum equations denote fric-
tion and Q in thermodynamic equation denote the
heating rate. The physical constants, g, R, C,, C,, = C, -
R, K =R/C, and y= C,/C, have their usual meanings.
Clearly the governing equations are valid for a gen-
eralized vertical coordinate {. However, to determine the

coordinate vertical velocity, { = d/dt , a particular defi-
nition of C is required. For example, { can be the ter-
rain-following hydrostatic-pressure
coordinate, o :

o= (b, - )/ (b, -1, (15)

where p. is value of p at the surface and p, denotes a

based vertical

constant pressure at the model top. Equation (15) shows
that o varies from 0 at surface to 1 at the model top.

The hybrid 0-8 coordinate employed in this model
has been proposed recently by Purser and Iredell (2002).
The generalized hybrid coordinate is defined by

<= Byl (1 -ae-9)]. (16)

where
9= (1-0)8+a(p—p,),



dr=1-0ap,,

6= (9*91‘)/(9T*9L),

p = (p,—p)(p.—pr)- (17)
Here, p, is a constant standard pressure that is somewhat
larger than any typical pressure at surface or at sea-level.
Similarly, ©, is a constant potential temperature some-
what smaller than any actual value of O encountered
within the model domain, and 6, is a specified constant
value of 8 at model top. There are two constant parame-
ters 0 and T. When a = 1, we recover the g-coordinate
defined by (15).

When a = 0, we obtain the hybrid 0—-0 coordinate:
Z = (08)/[o+1(1-8)]. (18)
Thus, o 0 (0, 1) is a parameter that optionally dilutes
the hybrid 0—6 coordinate (18) to the 0-coordinate (15).
The transition parameter T controls the vertical transi-
tion from a o-like behavior low down to a more nearly
isentropic behavior at upper levels.

The coordinate vertical velocity corresponding to
(16) is given by

- AQ B 1 ~ .

l 19, 6) + prr{J’Z (axU)dZ uaxp}
o vy ; 19
I7L—pT|:J.0( X )ac—u xp*}» (19)

where definitions of the coefficients A, B and C are
omitted for brevity.

2.2 Spatial and temporal discretization
The model grid is unstaggered with the prognostic

variables placed at the grid center; except ¢ is vertically
staggered. High-order compact difference operators are
employed to perform midpoint interpolation, spatial dif-
ferentiation and quadrature/integral of any model vari-
able placed at the grid centers. Computation of the
spatial derivatives can be unstaggered or staggered, the
latter being accomplished as a quadrature-inversion pro-
cess. Spatial discretization of the model equations is
entirely based on such compact difference operators
(Navon and deVilliers 1987; Purser 1998).

For time discretization, an explicit two-time-level
low-storage 3rd-order Runge-Kutta scheme (Williamson
1980) has been used. Moreover, to suppress grid-scale
noise and to ensure nonlinear computational stability, a
scale-selective spatial filter (Purser 1987) have been
applied in x and C directions, at each time step (not each
cycle of the Runge-Kutta scheme); such filters essen-
tially damp out the grid-scale structures from the solu-
tion and are applied only to the deviations of the

prognostic variables from their zonal mean or initial ref-
erence states. We have found that the pressure-deviation
variable, O , also needs to be filtered during each cycle
of the Runge-Kutta steps.

3. PRELIMINARY RESULTS

We have performed a number of simple tests using
the model; examples include the so-called cold and
warm bubble experiments. The results for the particular

case of o = 1, when the vertical coordinate { reduces

to 0 will be presented first. Then, we will present some
results of the hybrid 0-8 coordinate model. The domain
is cyclic in x for all experiments and the 4th-order com-
pact schemes have been used in both x and {. All results
are displayed using hydrostatic pressure as the vertical
coordinate.

3.1 The Cold bubble experiment

The reference atmosphere is resting, hydrostatic
and isentropic with a constant potential temperature of
300 K. A localized femperature deficit of the form:

AT = —ATycos [(TB)/2], (20)
only if <1 where
FoxR gozl/2
B =|0—0+0—O , @D
0% 0 0% 0

is used to initiate the flow. The model domain is 40 km
wide in x and ranges from 1000 hPa at surface to 135
hPa at top. The number of grid intervals in x is 400, with
a uniform resolution of 100 m. There are 136 vertical
levels that are placed on a stretched grid leading to a
variable resolution that is roughly 100 m. The time step
is 0.1 s, that is dictated by the CFL restriction on the
vertically propagating acoustic modes in the model.
Assigned values of constant parameters in (20) and (21)
are AT, = 15°C, x, = 20km, z, = 3km, x, = 4 km,

and z, = 2 km. The model is run for 15 min and the

results are shown for the { =0 case, in a window of
(20:36) km and (1000:500) hPa. Fig. 1 shows the pertur-
bation potential temperature at 0, 300, 600, and 900 s.
These results show reasonably good agreement, both
qualitative and quantitative, compared to the reference
solution for the cold-bubble test carried out by Straka et
al. (1993).

3.2 The Warm bubble experiment

The reference atmosphere is isentropic as in the
cold bubble test, but an initial potential temperature
excess of the form:



A8 = AB,cos [(TB)/2] 22)
is used to initiate the flow. Here 3 is defined by (20). The
model domain is now 20 km wide in x and p; = 50 hPa.
The resolution in x is 100 m and the number of vertical
levels is 136. Assigned values of the constant parame-
ters in (22) and (21) are A8, = 7°C, x, = 10km,

z,=275km x, =z, = 2.5km. Thetimestepis0.1s.

The model is run for 15 min and the results are shown
for the {=0 case in a window of (0:20) km and
(1000:100) hPa. Fig 2. shows the perturbation of 6 at
540 and 720 s. These results agree reasonably well with
relatively high-resolution warm-bubble runs performed
by Carpenter et al. (1990) and Mendez-Nunez and Car-
roll (1994) using their models.

Lastly, the warm bubble experiment is performed in
a realistic reference atmosphere given by the vertical
profile of 6 shown in Fig 3. The hybrid coordinate (16)
with o = 0.1 and T = 0.2 is used. The domain is 40 km
wide in x, with pr = 50 hPa and 6. = 550 K. There are 34
levels in the vertical, grid size is | km in x and time step
is 0.1 s. The model is run for 15 min and the perturba-
tions of u, w, and 0 at 900 s are shown in Fig 3. The
results show a stable integration of the model, with the
hybrid vertical coordinate. We have repeated such
experiments with other realistic reference states and
found the model to be quite stable and accurate for a
range of values of the coordinate parameters o and T.

4. DISCUSSIONS

The 2D nonhydrostatic hybrid 0-8 coordinate
model with high-order compact schemes in space and
3rd order Runge-Kutta in time is in its early develop-
ment stage. Preliminary results are encouraging, but fur-
ther tests are necessary to assess the strengths and
weaknesses of this new hybrid coordinate model.
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Figure 1. Perturbation of the potential temperature from the
cold bubble test at 0, 300, 600, 900 s from the hybrid model



run with { =0 . The contour interval is 1 K. Solid contours

indicate negative values. Zero contour is not shown.
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Figure 2. Perturbation of the potential temperature from the

warm bubble test at 540 and 720 s of time integration of the
hybrid model, with { =g . The contour interval is 0.5 K. Solid

contours indicate positive values. Zero contour is not shown.
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Figure 3. The Ist panel shows the vertical profile of initial
potential temperature (K). The 2nd, 3rd and 4th panels show
the perturbation of u, w, and 6, respectively, from the warm
bubble test at 900 s from the hybrid model run with o = 0.1
and T = 0.2. The contour interval is 0.25 ms™' for the perturba-
tions of u and w, and 0.25 K for the perturbation of 8. Solid
contours indicate positive values. Zero contour is not shown.



