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1.  INTRODUCTION 
 
       Many methods can be used to evaluate a numerical 
modeling system.  The most powerful methods are ones 
in which model output can be compared to known 
results, e.g., solutions that can be derived through 
dynamical analysis, or solutions that converge under 
certain conditions.  Examples of commonly used 
analytic and/or benchmark cases include certain 
mountain wave solutions, inertia-gravity waves, a 
nonlinearly evolving cold pool and density current, and a 
rising warm thermal.  Tests such as these are important 
for a number of reasons, e.g., for establishing the fidelity 
of a new numerical modeling system, or for testing the 
accuracy, efficiency, and efficacy of a new numerical 
technique. 
       Unfortunately, none of these analytic/benchmark 
cases include moist processes.  Moreover, despite the 
varying methods used to include moist processes in 
numerical models, there does not appear to be a 
commonly agreed-upon method to evaluate a moist 
model formulation. 
       This paper presents a new simulation that can be 
used as a benchmark for testing numerical models with 
moisture.  The design of the simulation is analogous to 
the nonlinear warm thermal benchmark case used by 
Tripoli (1992) and Wicker and Skamarock (1998), but 
includes phase changes of water vapor and cloud water. 
 
2.  THE NUMERICAL MODEL 
 
       The numerical model used for this study is 
described in detail in Bryan and Fritsch (2002).  The 
governing equations for this model were carefully 
formulated so that, when combined, the equation set 
conserves mass and energy.  In particular, the potential 
temperature (θ) and nondimensional pressure (π) 
equations are significantly different from those used in 
other numerical models (see Table 1).  Most notably, 
these prognostic equations retain two commonly 
neglected effects:  1) the heat capacity of liquid water, 
and;  2) the diabatic contribution to π.  However, since 
the model equations are not written in a conservative 
form, the numerical model integrations do not exactly 
conserve mass or energy, even though the equation set 
technically does. 
       For this study, the following processes are ignored:  
hydrometeor fallout, ice-phase microphysics, the 
Coriolis force, and subgrid-scale turbulence.  
Computational mixing is also neglected, despite the fact 
that a constant background mixing coefficient is 
normally applied in warm bubble tests such as this.  
Background mixing was avoided here in order to focus  
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on the formulation of the governing equations, and to 
highlight the importance of mass and energy 
conservation in numerical models. 
 
3.  THE DRY COUNTERPART SIMULATION 
 
       A simulation presented by Wicker and Skamarock 
(1998) was chosen as the dry reference case.  The 
simulation is two-dimensional, with a domain height of 
10 km and width of 20 km.  Rigid wall boundary 
conditions are specified on all four sides of the domain.  
The initial unperturbed environment is calm (zero initial 
winds everywhere), hydrostatic, and neutrally stable, 
defined by a constant potential temperature of 300 K.  A 
warm perturbation, with a maximum amplitude of 2 K, is 
placed at the center of the domain.  Results of a 
simulation with 100 m grid spacing after 1000 s of 
integration are presented in Fig. 1.  Similar to the results 
of Wicker and Skamarock (1998), the thermal rises and 
expands over time.  Two “rotors” develop on the sides of 
the thermal.  Large θ gradients develop in the middle of 
the thermal (i.e., within the “arch” spanning between the 
two rotors). 
 
4.  THE MOIST SIMULATION 
 
       Seeking to obtain a similar result for a moist 
atmosphere, we again specify the initial environment to 
be hydrostatic and characterized by exactly neutral 
stability.  In the dry case, it is possible to define neutral 
stability based on only one thermodynamic variable:  
potential temperature.  However, a moist atmosphere is 
not as simple.  To simplify the specification of the moist 
base state, two assumptions are made:  1) the total 
water mixing ratio (rt) is constant at all levels; and 2) 
phase changes are exactly reversible.  Under these two 
assumptions, a neutrally stable environment can be 
obtained using one conservative thermodynamic 
variable.  We use the wet equivalent potential 
temperature (θe, Emanuel 1994 pg. 120), which is 
conserved for a reversible moist adiabatic atmosphere 
with constant total water mixing ratio.  Using the 
hydrostatic equation for a moist atmosphere and the 
definition of θe, the vertical profiles of pressure, 
temperature, and mixing ratios of moisture can be 
obtained if values for θe and rt are specified (see Bryan 
and Fritsch 2002 for further details). 
       All other parameters are the same as for the dry 
case.  Results after 1000 s for a case in which θe=320 K 
and rt=0.020 are presented in Fig. 2.  The results of this 
moist case are very similar to the results of the dry case, 
especially with regards to the structural details such as 
the two “rotors” that form on the sides of the thermal and 
the “arch” that connects them.  The moist thermal rises 
slightly faster than the dry thermal,  and after 1000 s the  
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Fig. 1  Results of the dry thermal simulation.  (a) 
Perturbation potential temperature, contour interval 0.2 
K, zero contour omitted.  (b) Vertical velocity, contour 
interval 2 m s-1, negative contours dashed. 
 
vertical velocity field has higher maximum and minimum 
values.  Nevertheless, the structural details are 
remarkably similar. 
       It is important to reiterate that the model formulation 
for this simulation does not neglect any term in the 
governing equations.  In particular, the specific heat of 
liquid water is included, and the diabatic contribution to 
the pressure equation is included;  it is a common 
assumption in numerical models to neglect these two 
effects.  Furthermore, the error in total mass and energy 
conservation is quite small (about 10-4 percent), 
especially compared to model formulations that ignore 
certain terms in the governing equations (which will be 
presented in the next section).  Given this high degree 
of accuracy in mass and energy conservation, and the 
similarity to the dry case, it seems reasonable that this 
case can be considered a moist benchmark to which 
moist numerical models can be compared.  Additionally, 
as in the dry case, the simulation proposed here is 
remarkably insensitive to the values used to define the 
initial neutrally stable sounding.  This result helps 
establish the fact that the moist simulation design is 
robust,  i.e.,  the  correct  result  is  not  dependent  on a  

 
Fig. 2  Results of the moist simulation.  (a) Perturbation 
wet equivalent potential temperature, contour interval 
0.5 K, zero contour omitted.  (b) Vertical velocity, 
contour interval 2 m s-1, negative contours dashed. 
 
specific initial thermodynamic environment.  This is an 
important point, since it provides further confidence that 
the results truly represent a benchmark solution. 
 
5.  SENSITIVITY TO GOVERNING EQUATIONS 
 
       The assumptions of reversible phase changes and 
the absence of hydrometeor fallout clearly make this 
test case a simplification of reality.  However, we have 
found the case to be valuable for testing the formulation 
of numerical models.  As an example, four different 
model formulations (Table 1) are tested and presented 
in this section.  Equation Set A makes two 
approximations that are commonly used in cloud 
models:  the diabatic contribution to the pressure 
equation is ignored, and the specific heat of water is 
neglected.  This equation set is similar to that used in 
the Klemp-Wilhelmson model, MM5, and ARPS, as well 
as several other numerical models.  For Equation Set B, 
only the specific heat of water is neglected in the 
thermodynamic and pressure equations.  Since the 
diabatic contribution to the pressure equation is 
included, this equation set conserves mass.  This 



 

 

Table 1  Summary of thermodynamic and pressure equations evaluated with the moist benchmark simulation, where 
“BM” refers to the benchmark equation set.  See Bryan and Fritsch (2002) for definitions of symbols 
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formulation is similar to that used in COAMPS, and in 
some respects is similar to models that integrate a 
density equation rather than a pressure equation (such 
as the WRF model).  In Equation Set C, the specific 
heat of water is included, as is the diabatic contribution 
to the pressure equation, but the term involving 
divergence in the thermodynamic equation is neglected;  
scale analysis suggests that this term is small and, 
presumably, negligible.  To our knowledge, this equation 
set has not been used in the literature, but is included 
here as an example of how approximate forms of the 
governing equations can be tested numerically.  
Equation Set D uses the ice-liquid water potential 
temperature (θil) of Tripoli and Cotton (1981).  Equation 
set D also neglects the diabatic contribution to the 
pressure equation, and the specific heat of water in the 
pressure equation.  This equation set is similar to that 
used in RAMS and in the University of Wisconsin 
Nonhydrostatic Modeling System. 
       Results (Fig. 3) clearly show the dramatic impact of 
neglecting terms from the complete thermodynamic and 
pressure equations – none of the simulations using 
approximate equations compare well with the 
benchmark solution (Fig. 2a).  In all of these cases, the 
thermal rises much slower than the thermal in the 
benchmark run.  In the θe fields, large undershoots (i.e., 
anomalously low values, depicted by dashed contours) 
develop in all cases. 
       It is interesting to note that the output from runs A 
and B are very similar.  Both thermals rise to ~6.9 km, 
and the vertical motion patterns are nearly identical.  
This result suggests that the extra effort required to 
conserve mass in a numerical model (by including the 
diabatic contribution to the pressure equation) may not 
lead to significant improvements in results unless total 
energy is also conserved (as in the benchmark). 

       The results from run C were surprising.  Among all 
the simulations, this run least resembles the benchmark 
case.  The thermal only reached 5.8 km, and the θe 
pattern is quite different from the other runs.  This test 
highlights the danger of neglecting terms that may seem 
unimportant under a scale analysis. 
       The simulation that used θil as the governing 
variable (run D) produced results that most closely 
match the benchmark.  The thermal reaches ~7.6 km, 
and becomes only slightly distorted in shape.  On the 
other hand, this formulation has the largest total mass 
and total energy errors out of all runs presented here. 
       The value chosen for rt in these tests is abnormally 
high for the imposed temperature sounding.  One might 
wonder whether these results only come about due to 
this unphysical initial environment.  A comparison of 
simulations with different values for θe and rt (not shown) 
reveals that the differences presented here are 
accentuated over those one would expect to find in 
more “normal” environments.  Nevertheless, it is clear 
that the mass-conserving and energy-conserving form 
of the thermodynamic and pressure equations can 
produce the desired results in all environments, and that 
these equations should be preferred over approximate 
equation sets. 
       We have conducted additional simulations using 
realistic initial environments to address whether the 
conclusions drawn from this paper hold for more typical 
uses of numerical models.  The simulations with the 
benchmark equation set tend to have the strongest 
updrafts, the highest cloud tops, and the most rainfall.  
Based on these results, we have concluded that the 
form of the governing equations used in a numerical 
model does have an impact on the results, although 
perhaps a small impact for most uses. 



 

 

 
Fig. 3  Perturbation wet equivalent potential temperature from simulations using various model formulations:  (a) 
equation set A, (b) equation set B, (c) equation set C, and (d) equation set D.  Contour interval is 0.5 K.  Negative 
contours are dashed.  The zero contour is omitted.  Near the right-hand side of each panel, the height of the top of 
the thermal is indicated, along with the height of the top of the thermal from the benchmark (“BM”) simulation. 
 
6.  CONCLUDING REMARKS 
 
       Although the model used in this study does not 
exactly conserve mass, momentum, or energy, the 
results strongly suggest that conservation of these basic 
variables can be necessary to obtain accurate results in 
some instances.  This result supports the need to 
construct numerical models around conservation 
principles, which is the driving principle behind several 
recent model development efforts (e.g., Ooyama 2001, 
Skamarock et al. 2001, and Satoh 2002). 
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