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1. INTRODUCTION

It is presumed that tornado report counts for
monthly or longer periods may be directly related to
climate indices, since tornadoes tend to occur during
certain weather patterns (Fawbush and Miller 1954),
and the frequency of weather patterns may be directly
related to climate indices (Bjerknes 1969). In support
of this supposition, Marzban and Schaefer (2001)
have found statistically significant sample correlation
between Pacific sea surface temperature (SST) and
tornado counts in the southeast U. S.

There are a number of reasons that standard
modeling  approaches, such as developing
independent least squares regression equations with
Normal errors for a field of observations, may be
inadequate for examining dependence between
tornado report counts and climate indices. From a
meteorological perspective, frequency of weather
patterns may differ in separate years and at separate
locations even though climate indices are nearly
identical, due to internal variability of the atmosphere.
This means that dependence between weather
patterns and climate indices is non-stationary in
space and over time. Additionally, tornado reports
are likely to be correlated in space when summed
over monthly or seasonal periods. From a statistical
perspective, tornado reports are rare, discrete and
non-negative. Thus, it is expected that these data do
not follow a Normal distribution. Finally, societal
changes introduce non-stationary reporting biases in
both time and space (Doswell and Burgess 1988).

Typically, tornado report counts have been
preprocessed to remove non-stationary behavior
before applying a stochastic model to infer the
significance of certain sample statistics. We have
taken an alternative approach in which a stochastic
model has been designed that explicitly models non-
stationary behavior by constructing an hierarchy of
conditional probability models that are linked by
applying Bayes theorem, a fundamental rule of
probability calculus.

2. DATA

Tornado reports from 1953-1995 were obtained
from the Storm Prediction Center archive of severe
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weather reports (www.spc.noaa.gov/climo). A grid of
50-km boxes was overlaid on the U. S., and the
number of tornadoes was tallied monthly in each box.
Thus, time series spanning 1953-1995 of monthly
tornado report counts was generated for each box.

Any number of climate indices may be
considered as predictors in a stochastic model. At
this preliminary stage, we have included the Nino3.4
SST index (since it is known that tornado report
counts are significantly correlated with equatorial
Pacific SST), the North Atlantic Oscillation (NAO),
and the North Pacific Index (NPI), which provide
measures of northern Atlantic and northern Pacific
SST.

3. STOCHASTIC MODEL

Hierarchical stochastic models attempt to
decompose observed data into a series of conditional
probability models. In this way, one can build
separate models for the observations (data model),
the stochastic process describing the statistical
behavior of the observations (process model), and
the parameter uncertainty (parameter model). The
general hierarchical model has three components:

Data Model: Pr[data | process, parameters]

Process Model: Pr[process | parameters]

Parameter Model: Pr[parameters]
where Pr[ ] denotes that a probability distribution has
been assigned, and the vertical line indicates the
probability distribution is conditional.

» The data model assigns a theoretical conditional
probability distribution to the tornado report
counts. This provides the necessary flexibility to
use probability distributions other than the
Normal distribution. The parameters of the data
model depend on underlying process and
parameter models. Thus, the characteristics of
the data model reflect uncertainty not only of the
observations but also of process and parameter
model assumptions. It is advantageous to use
scientific  reasoning and knowledge in
accordance with data analysis when selecting a
distribution for the data model. With this
approach, all available knowledge is formally
incorporated into the analysis.

e The process model specifies a stochastic
process that relates tornado occurrence to
climate indices, with estimated parameter values
describing the degree of association. It is
possible that a number of stochastic processes
might adequately reproduce the statistical



behavior of tornado report counts. In the

hierarchical framework, it is possible to

systematically compare alternative process
models.

e The parameter model assigns a theoretical
probability distribution to the parameters of the
process model. Generally, point estimates of
parameters are used when predicting
observations. For example, coefficients in linear
regression models are considered constant when
generating estimates of the predictand. In the
hierarchical framework, the coefficients are
considered to be random variables.

In this preliminary study, we let Y(sit) be the
number of tornado reports in some geographical
region indexed by si=1,...,n at times t=1,...,T (n is the
number of boxes and T is the number of months).
Thus, Y(1,t) corresponds to the monthly time series of
tornado report counts for box 1, as described in
Section 2.

The data model is given by:

Y(si,t)|A(si,t) ~ Poisson(A(si,t)) for all sjt
That is, conditioned upon the Poisson mean (A),
tornado report counts are independent and follow a
Poisson distribution.  This does not suggest the
counts are marginally independent. Instead, marginal
spatio-temporal correlation is generated by an
underlying process model rather than incorporated
directly in the data model.

The process model is given by:

log(A(sit))IB,0" ~ N(x8,0))
where 5 is a 4x1 (i=1..4) vector of regression
coefficients, x; is a 4x1 vector of covariates (Nino3.4
SST, NAO, NPI, and time) that vary over time, and
02,7 is a spatial covariance matrix that represents
random error. That is, the log of the Poisson mean is
modeled by a time-dependent linear regression with
normally distributed errors that contain spatial
dependence. Geographical sampling biases, such as
those related to demographic characteristics, are
partially accounted for azn, while A (x¢8) includes
linear dependence on time to partially account for
temporal sampling biases.

The parameter model is given by:

B~ N(0,%)
where % is a spatial covariance matrix. Distributions
are assigned 1o i ana 0%, as well.

We then evaluate the joint distribution of all
parameters given the observations using Bayes'
Theorem. Markov Chain Monte Carlo (MCMC)
methods are used to generate realizations of this joint
distribution. See Wikle et al. (1998) for examples of
MCMC applied to problems in atmospheric science.

4. RESULTS AND DISCUSSION

Results from this preliminary model indicate that
NPI and NAO more strongly influence A than Nino3.4
SST. The spatial pattern of coefficients for Nino3.4
SST is consistent with Marzban and Schaefer (2001)
in that positive dependence occurs in the southeast
U.S. However, the magnitudes of Nino3.4 SST
coefficients are much less than those of NPI and

NAO, which exhibit negative dependence in the
eastern and central U.S., respectively.

Previous research has found an order of
magnitude increase from the 1950s to the 1990s of
annual U.S. tornado report counts (Brooks 2000). It
is suspected that this increase is largely attributable
to changes in public awareness and in warning
verification by the NWS (Brooks 2000). Our results
indicate that trend over time has large spatial
variability, associated with population density.
Positive coefficients (increasing trend) are evident in
a corridor from the Ohio Valley into New York and in
large metropolitan areas (Denver, Dallas-Fort Worth
metro area, Oklahoma City, Minneapolis, New York,
Philadelphia). In contrast, rural areas in the central
U.S. show decreasing trend.

Future model development will concentrate on
explicitly modeling sampling biases, introducing
interaction terms for the climate indices, allowing Z; to
vary over time, and designing separate models for
FO-F5 and F2-F5 tornadoes.
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