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1. INTRODUCTION

We are developing a non-hydrostatic semi-
Lagrangian dynamical core as a contribution to the
multi-institution Weather Research and Forecasting
(WRF) initiative (for example, Michalakes et al.
2000, or the web-site, http://wrf-model.org). This
version is intended to complement the Eulerian
dynamical core, developed at NCAR (Klemp et al.
2001).

A general description of this model is provided
in Purser et al. (2001). The model variables are
held on a fully unstaggered grid, which is especially
convenient in a semi-Lagrangian model as it avoids
the need for either multiple families of trajectories
or the additional interpolations that a staggering of
the variables would imply.

The numerical deficiencies of the unstaggered
arrangement are largely overcome by the adoption
of high-order spatial numerics (Purser and Leslie
1988). The horizontal and vertical finite differ-
encing operators are of the ‘compact’ type (Navon
and de Villiers 1987) and, in the case of the semi-
Lagrangian advection, these operators are exploited
as described in Leslie and Purser (1995) to ensure
formal conservation of mass and advected scalars.
The grid-to-grid semi-Lagrangian interpolations are
performed using the so-called ‘cascade’ method of
dimensional splitting (Purser and Leslie 1991). This
facilitates the efficient use of forward (downstream)
trajectories (Purser and Leslie 1994) which, in turn,
allows a greater choice of time integration methods.

Given that semi-Lagrangian models tend to
possess longer timesteps than purely Eulerian mod-
els allow, the control of time truncation errors
becomes a subject of potentially greater concern.
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The leapfrog method, furnished with the usual
time filter (Robert 1966; Asselin 1972) may there-
fore be a less attractive choice for a time integra-
tion scheme than some of the higher-order alter-
natives that a forward-trajectory semi-Lagrangian
model can exploit. We are experimenting with
the third-order Runge-Kutta method proposed by
Williamson (1980) which can be modified to form a
semi-implicit scheme as suggested by Purser (2001).

The formulation of the model is not con-
strained to any single particular vertical coordinate;
we therefore have the opportunity to investigate
whether hybrid sigma-theta coordinates, which are
convincingly shown to be of benefit in relatively
coarse-scale models (Uccellini et al. 1979; John-
son and Uccellini 1983; Bleck and Benjamin 1993;
Johnson et al. 1993) have corresponding practical
benefits at the resolution scales of between 1-10 km
intended for the WRF model.

The emphasis of the present paper is the ver-
tical ‘hybrid’ discretization and its accommoda-
tion within a semi-implicit modification of the low-
storage Runge-Kutta scheme of Williamson (1980).
Experiments with an Eulerian ‘vertical slice’ ver-
sion of our model (Kar and Purser 2002) have been
of great value in rapidly identifying strengths and
weaknesses of various numerical options, including
those relating to the choice of vertical coordinate.
Some of these experiments employed a form of the
hybrid coordinate described by Purser and Iredell
(2002) which attains a constant potential temper-
ature, 6, at the (finite) model top. This boundary
condition must be supplemented by another condi-
tion on the pressure, p.

The simplest choice is to set pressure to a
constant at the top, which is acceptable in ideal-
ized simulations, even for extended integrations, if
this top is at a sufficient altitude (eg. Konor and
Arakawa 1997). However, when it comes to fore-
casting with a model whose top is at a relatively
modest altitude, the imposition of a constant pres-
sure at the top isentrope would necessitate an un-
acceptable distortion. One solution we considered
was to adopt a capping barotropic ‘shallow water’
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Figure 1. Two examples of the hybrid o-p coordinate, 7
obtained with different combinations of the parameters g,
and 7p. The horizontal axis shows the rescaled surface
pressure p*, and the vertical axis shows the corresponding
rescaled pressure, p. The plotted curves identify the locations
of the 7 coordinates at equally spaced intervals of 0.05
between 0 and 1. (a) Bp = 0.1, 7 = 0.3 would provide a good
balance between coordinate smoothness and reducing the
effects aloft of orography. (b) The choice 7, = 1, regardless
of Bp, generates the modified o-coordinate, n = 6.

model to supply (through its evolving depth) the
non-constant hydostatic pressure condition for the
top of the main domain, but this would involve con-
siderable additional complications. Instead, follow-
ing the lead of Zhu et al. (1992) we are exploring
the broader class of o-8-p hybrid coordinates that
set the top of the domain to a constant pressure
without artifice. The description of this coordinate
will occupy the remainder of this article.

2. HYBRID VERTICAL COORDINATES

We approach the problem of defining the final
0-0-p hybrid coordinate, {, by first creating an
intermediate o-p hybrid, 1, going smoothly from 0
(at the ground) to 1 at the top; then we postulate
the existence of a thermodynamic function (7, 8)
with the same range, [0,1], but whose sensitivity
to 6 is progressively diminished towards both the
bottom and top.

In the first step, we define n implicitly by
requiring a function jointly of the pressure, p, the
surface pressure, p*, and 7 itself, to vanish. It
is convenient to linearly rescale (and reorient) the
actual and surface pressures in terms of a nominal
standard range, [ps,pt], where p; is the constant
pressure intended at the model top, ps, another
constant value typical of the ground or sea level:
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and similarly for rescaled surface pressure p*. Then

a candidate for the intermediate hybrid, 7, is
obtained by the condition,

Qlp,p*sn)=n—-p+g(By —B;)=0, (2)
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and where the hyperbolic ‘blending function’, Bg,,
defined,
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asymptotes smoothly towards the line B = 0 for
large negative x and towards B = =z for large
positive x with a transition whose abruptness is
controlled by the ‘blending parameter’, 8,. For
the choices, 3, = 0.1, 7, = 0.3, the resulting 7
coordinate, plotted in the (p*,p)-plane, is shown
in Fig. (la). A smaller 8, makes the transition
from p-like to terrain-following behavior sharper;
a smaller 7, causes terrain-following coordinate
layers to become thinner over elevated terrain.
An important special case occurs when 7 = 1,
when the coordinate reverts to the modification of
Phillip’s (1957) o-coordinate often employed when
the domain’s top is at a finite constant pressure:
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This case is shown in Fig. 1b.

The coordinate of Purser and Iredell (2002),
plotted as graphs in the plane of (6,7n), would
typically appear as in Fig. 2a, where, in this
case the top is defined as the isentrope at 8 =
420 K. Limitations include the lack of safeguards
against excessive thinning of the lowest layers and
a breakdown of the coordinate at extremely low
0. A more important problem is the difficulty in
using this coordinate for real data studies in a
model with a relatively low top. A more suitable
coordinate, shown in idealized form in Fig 2b,
retains a condition of constant p (instead of )
at the top, with built in limits to how thin or
thick (in n) the coordinate layers can ever become,
and no intrinsic restriction on the range of 8
accommodated.

We have developed a formulation of the coor-
dinate ¢ in the style of Fig. 2b with parametric
control over the abruptness of transitions between
the adjoining regions A through E shown in this
diagram. Again, we exploit hyperbolic formulae for
these transitions. For example, the aymptotic val-
ues of n for a given ¢ € [0, 1] in regions A and B are
given by an expression of the form,

1
Tab = hab + 9ab + bab (ﬁib + (C - cab)Z) ’ ’ (7)

for values of the coeflicients adjusted to satisfy
conditions, 74(0) = 0, nas(1) = 1, 1.,(0) = m,
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Figure 2. (a) Graphs in (8,7n)-space of coordinates ¢ with
a typical set of parameters obtained by the formulation
of Purser and Iredell (2002). (b) Schematic depiction of
an alternative formulation of the hybrid coordinate ¢ that
ensures that the top remains at a constant pressure and layer
thicknesses at the top and bottom are regulated between
predetermined thicknesses of 7. The five distinct regions,
A-E, are referred to in the text.

Ny (1) = 74, where 7, and 7, are the imposed pa-
rameters controlling the extremes of layer thick-
nesses (in 7) in the asymptotic regions of A and
B of Fig 2b. With a similar construction for the
asymptotes 7q4. of regions D and E, we require 6 to
obey,

0=240, +06n+0zc+0c7)(w)7 (8)

where constant 6, corresponds to 6 at the intersec-
tion of regions B, C' and E and,

0z=0t—05—0e7 (9)

for the 6; that corresponds to the 6 at the
intersection of regions A, C' and D. Since 6,
acts as another ‘blending parameter’, a convenient
nondimensional alternative parameter, 8, = 6./6,
simplifies the prescriptive notation. The function,

1
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produces the zig-zag form of each curve of constant
¢ in Fig. 2b. The degree to which the coordinate (
mixes #-like and p-like characteristics is under the
control of the parameter, 8.,. This completes the
formal definition of the proposed coordinate (.

In practical terms, our prescription for (
remains implicit and it is generally easier to
manipulation the algebraic formulation by inverting
the functional relationships between P and w, and
between w and 1 so that, by analogy with the
discriminant function @ of (2), we may construct

a function, R(n,0, () and define the the coordinate
alternatively by the condition of vanishing R,
where:

R(n,6,¢) = (nas(¢) — Mae(€)) w(P) + mae(¢) — m,

(12)
where now,
1 P
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3. DISCUSSION

The invertions of the functional relationships
required to evaluate n and ( are equivalent to con-
strained zero-finding problems for @) qnd R. Since
all the formulae employed are smooth and easily
differentiated, Newton’s method is efficient, pro-
vided the first guesses are reasonably good. For
initial data processing, when good first guesses for
¢ are not avaliable, a combination of asymptotic
approximation, based upon the reasonable idealiza-
tion of function R in the regions in Fig. 2b having
piecewise-linear dependence on 7, 8 and (, together
with an adaptation that combines the the numer-
ically robust (but less efficient) ‘bisection method’
(Conte and de Boor 1980) with Newton’s method,
serve to provide reliable evaluations of ( for any
realistic data profiles. In the semi-Lagrangian con-
text, these steps can be combined cleanly with the
task of locating the vertical trajectory end points.
For some parameter combinations, we find that
¢ = n, so that our class of hybrids includes the origi-
nal o-p hybrid and, therefore by extension, includes
also the modified & coordinate.

A challenging problem in working with hybrid
coordinates in the context of a semi-Lagrangian
model is formulating numerically reliable solvers for
the acoustic fast terms. This is not an easy problem,
even in the relatively straightforward special case of
o-coordinates, where the vertical mass distribution
remains everywhere fairly equitably distributed.
Preliminary explorations of this problem for the
more general hybrid coordinates indicate that the
vertical portion of the implied elliptic operator must
be quite carefully constructed to ensure consistency
with the vertical gradient operators adopted in the
model. A discussion of our progress with this aspect
of the model will be provided at the conference.
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