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1. INTRODUCTION

Interpretation of meteorological radar data is often

done in a subjective, qualitative manner. While fea-

tures of interest can be identified and tracked in this

manner, this method does not lend itself to automa-

tion or mass processing of radar data. Use of cen-

troid tracking is one method to approach this prob-

lem, but it is limited to convective cores. We be-

lieve that more robust clustering techniques can be

developed to allow a better identification of storm

features. Some applications of these techniques in-

clude: identification and study of features other than

just convective cores, development of object-oriented

codes to build databases from large amounts of radar

data, and automation to provide operational mete-

orologists with more comprehensive (and easily ac-

cessible) information (see [6, 9, 10]).

In this paper, we first introduce a non-convex

optimization clustering technique for image process-

ing: the deterministic annealing method [5, 8]. This

method works on image segmentation based on the

principle of maximum entropy, which is independent

of the initial choice of configuration and without

a priori knowledge of the image. However, clus-

tering for segmentation of complex images is often

problematic: the clustering methods always segment

the image, but they often replace a complex im-

age with an even more complex set of complicated

segments. This is particular true with meteorolog-

ical radar data. To overcome this problem, we re-

place the image segmentation with a rigorous sta-

tistical test. This new approach follows our earlier

work on coherent structure detector [1, 2, 3, 4]. The

method is based on a definition of an incoherent im-

age and controls the test size without assumptions
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about the process. We apply this concept of co-

herency to multidimensional images for the detec-

tion and characterization of coherent image seg-

ments. Our recent analysis established the test size

and provides an algorithm for calculating p-values.

2. METHODOLOGY

Clustering using Deterministic Annealing (DA) ap-

proach ([5, 8]) focuses on defining a cost criterion to

be minimized. In our case, we minimize the expected

cost D under constrained “randomness” expressed

by the Shannon entropy H :

D =
∑

x

p(x)
∑

y

p(y/x)d(x, y),

where x is the input source vector; y is the centroid

vector associated with x; p(x, y) is the joint proba-

bility distribution; p(y/x) is the conditional proba-

bility; d(x, y) is the Euclidean distance, and

H = −
∑

x

∑

y

p(x, y)logp(x, y).

The minimization can be achieved by minimizing the

Lagrangian F = D − TH , where T is the Lagrange

multiplier used as a pseudo-temperature parameter

in the annealing scheme. Simple mathematical anal-

ysis leads to a fixed point iterative algorithm:

y(n+1) = f(y(n)),

where f is define by

f(y) =

∑

x

(

xe(−β|x−y(n)|2)

∑

y e(−β|x−y(n)|2)

)

∑

x

(

e(−β|x−y(n)|2)

∑

y e(−β|x−y(n)|2)

) ,

and where β = 1/T .

We have developed a localized DA which scales

linearly with area of image since our bigger images



cover more area instead of increasing in resolution.

Once the suitable parameters such as the pseudo-

temperature parameter β, the number of clusters,

and the number of iterations have been chosen, we

obtain the segmented radar image. Our next step is

to identify the coherent clusters from the segmented

radar image.

Unfortunately, the statistical relevance of any

particular segment is not always clear. Analysis

and interpretation in the presence of white noise is

straightforward, but analysis of clusters in the pres-

ence of spatially correlated noise is much more com-

plex. Thus, we develop a rigorous statistical test to

detect and characterize the coherent cluster from in-

coherent (but spatially correlated) noise. This test,

the coherent cluster detector (CCD), is based on one

of the oldest methods in nonparametric statistics:

the development of a randomized reference distribu-

tion. Based on the definition of an incoherent image,

no explicit knowledge is needed of the spatial noise

spectrum or amplitude distribution. In addition, no

explicit knowledge is needed of the cluster shape or

amplitude. In our case, we want to distinguish co-

herent clusters from incoherent spatially correlated

noise in the fine structure of high-resolution images

due to clouds and other concentrated scatters (in-

sects, birds and dust), as well as inversion layers,

and air density variations.

To build our randomized reference distribution,

we build a large number of exemplars through ran-

dom rearrangement of the original segmented radar

image. The exemplars are built by applying a mul-

tidimensional Fourier transform, randomizing the

phases, and transforming back. If the image is spa-

tially correlated noise, then the exemplars have the

same distribution as the original image. These ex-

emplars are then clustered.

At each exemplar cluster, order statistics are ac-

cumulated from the group of n maximum values of

the exemplars xe
i . These order statistics are then

used to provide thresholds and corresponding p-

values [7] for comparison with xi, the original image

at each clusters. For a specific level of significance

α (size of the test) and the number of clusters N ,

we use the indicator function I(.) to estimate the

threshold

tCCD(N, n, α) =

{

sup t :

(

1

n

n
∑

i=1

Ixe

i
>t

)

> α

}

.

At each cluster in the original image, we use these

thresholds to determine the associated p-value. Only

those clusters that have sufficiently small p-value

may be viewed as statistically relevant. Through

this threshold technique, we can decide if the orig-

inal cluster is statistically relevant. The coherent

cluster detector controls the false alarm γ per clus-

ter and scales linearly with image area, since con-

trolling false alarm per image is impractical and in-

appropriate for large area images. In our statistical

test, if the cluster is incoherent, the exemplars and

the original clustered image have the same distri-

bution. If, on the other hand, the cluster is coher-

ent, energy from the coherent cluster component is

spread through the entire image when random rear-

rangements of radar image were used. The threshold

used by the coherent cluster detector is not greatly

affected by the presence of the statistically relevant

coherent structure at the cluster. This results in a

high probability of detection.

3. EXAMPLES

To illustrate the coherent clustering technique, we

first consider the image of a known coherent signal

embedded in colored spatial noise. The noise compo-

nent was obtained by passing Gaussian white noise

through a spatial linear. Figure 1(a) shows the orig-

inal image as well as each location of the clusters

(indicated in ⊗), when β = 39. Figure 1(b) indi-

cates the identification of each clusters. Figures 1(c)

and 1(d) show the image for an exemplar and the

identification of each cluster in the exemplar. Note

that the coherent signal is spread through the en-

tire image. Using our coherent clusters detector, the

resulting p-value map is obtained in Figure 1 (e).

We are able to recover the coherent signal from the

image. This technique works well for moderate to

low noise levels, but higher noise levels require noise

removal techniques.

Now we apply our coherent clustering technique

to the radar image. The image used in this study

was collected from WSR-88D Doppler radar. Figure



2 (a) shows radar reflectivity data during a thunder-

storm outflow. Notice the strong reflectivity at the

location of xaxis = 0.25 and yaxis = 0.5. The p-value

map for the radar image is given in Figure 2 (b), in-

dicates the statistically relevant information (coher-

ent clusters) in the image data. The performance of

the statistical test can be evaluated by a comparison

study of the coherent cluster detector and the tra-

ditional optimal detector for moderately high signal

to noise ratio with known signal and noise setting.

Noise characteristics, the image segment properties,

and the clustering algorithm will determine this per-

formance.

Our aim is to detect and characterize coherent

structures in the image in time- evolving settings.

Sequences of images may be used for the detection

and prediction of the storm event using the p-value

map. Another viewpoint of incoherency may also be

considered based on Poisson noise that follows from

ground clutter, aircraft, birds, insects, and precipi-

tation events. The advantage of the coherent clus-

tering techniques for image data fusion is its non-

parametric nature. It requires no explicit knowledge

of the spatial noise spectrum or the Poisson ampli-

tude distribution.
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Figure 1 (a) Signal + Noise Image With Clusters, (b) Identification of the Clusters

Figure 1 (c) Exemplar - Signal + Noise Image With Clusters, (d) Exemplar -Identification of the Clusters

Figure 1 (e) Revovered Signal (p-value map)

Figure 2 (a) Radar Image (b) P-value maps (Coherence Clusters)


