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1.  INTRODUCTION

Supercell thunderstorms account for a small
percentage of convective activity, and yet they are responsible
for a disproportionate amount of severe weather damage.
Long track, violent tornadoes, giant hail, and extreme surface
wind gusts are m ore likely to accompany supercell
thunderstorms than most other types of organized convection
(Browning 1977; Burgess and Lem on 1991; Moller, et al.
1994).  Because of this propensity to harm life and property,
supercell thunderstorms draw increased attention from
National W eather Service warning forecasters.  Faced with a
severe weather s ituation, a warning forecaster must rely on
his/her data interpretation skills , s ituation awareness, and the
ability to integrate numerous sources of data, using human
expertise to make effective and t imely warning decis ions.
However, interrogating a potentially severe thunderstorm
requires a large allocation of the forecaster’s temporal and
cognitive resources.  The presence of several potentially
dangerous storms within the County W arn ing Area further
strains the forecas ter’s ability to investigate the severity of
each storm, decreasing his/her interrogation effic iency
(Bunting 1998; Durso and Gronlund 1999).  The addition of
automation through signature detection algorithms has shown
to improve the interrogation effic iency a forecaster can exhibit
in a severe weather s ituation (Lemon, et al. 1992), but such
tools can promote algorithm dependency.

P revious methods of automated thunderstorm
interrogation have focused on the independent detection of
s ingle features (or s ingle set of features) commonly
associated with severe thunderstorms, leaving the
classification process as an exercise solely for the human
user.  Research has shown that supercell thunderstorms
simultaneously possess many of these features.  Thus, a
feature-based object recognition scheme can be used to
identify such storms.  Since supercell thunderstorms
frequently produce severe weather, the recognition that a
storm is adopting supercell-like characteristics is benefic ial to
the warning forecaster.

W ithin the W arning Decis ion Support System -
Integrated Information (W DSS-II), the Supercell Identification
and Assessment Algorithm (SIAA) has been developed to
integrate the results of multiple s ignature detection algorithms,
creating a more holistic approach to storm type classification.
By simultaneously searching for several features known to be
related to severe potential in thunderstorms, and common to
supercell thunderstorms, the amount of cognitive processing
required by the human is reduced, and the likelihood of the
user applying a relevant conceptual model is increased.  In
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 an effort to promote this heightened level of s ituation awareness,
SIAA is designed to m im ic the feature-based interrogation process
that a human meteorologist would follow in determ ining storm
type, and assessing the priority level at w hich the storm should
receive increased attention.

2.  ALGORITHM DESCRIPTION

Because of its  intuitive use of membership, fuzzy set
theory is used as a proxy for the human process of c lassification
in  determ ining the degree to which a thunderstorm is
supercellular.  There are several advantages gained by using
fuzzy sets and fuzzy logic for this application.  Many of the
following observations fit well w ith the fuzzy set description laid
forth in (Zadeh 1965).  First, w ithin the field of meteorology, there
is no un iversally accepted quantitative definition of a supercell
thunderstorm.  The boundaries between storm type classes are
not crisp.  Also, uncertainty o ften exists about the presence, or
significance of a feature, which implies a degree of membership
of an object to some class, or c lasses.  Fuzzy set theory is well
equipped to deal with a spectrum of membership of an object to
multiple c lasses.

Second, fuzzy set theory facilitates a feature-based
approach towards the intuitive c lassification of an object, provided
that the c lass features can be well defined, as with  supercells.
Fuzzy sets allow the m easurement of feature memberships to
idealized classes, and combination of these memberships to arrive
at easily understood classification decis ions.

Finally, fuzzy logic supports the implementation of a rule
base and the ability to describe the s ituation in linguistic terms.
These rules may be constructed to model the relative importance
of features in the c lassification decis ion, and can provide both
supporting and refuting evidence to place an object in a certain
class.  In addition, the use of fuzzy set operators yields fuzzy
rules and classifiers that are very flexible and easy to change, or
tune (union, intersection, complement, and aggregation; Yager
1988; Klir and Folger 1988; Zadeh 1965).

2.1 Storm type classification

The concept of a long-lived, quasi-steady, intense,
rotating thunderstorm has been a topic of vigorous investigation
for several decades, even predating the term  “supercell”
(Browning 1962).  The advent of more sophisticated data
processing techniques and radar technology, especially Doppler
radar, has improved the understanding of supercell structure and
evolution.  Through the past fifty years, research has shown that
despite assuming a wide variety of configurations and
or ientations, supercells can possess common identifiable
features.  Although there is no widely accepted quantitat ive
definition of a supercell, several of these features are mentioned
in most, if not all supercell definitions.  Such features include:

1) deep, persistent shear (the mesocyclone; Davies-Jones



1984; Brooks, et al. 1993)
2) possession of a bounded weak echo region (Chisholm
1973; Lemon 1980), 
3) deviant motion, with respect to the mean wind (Browning
1963; Lemon and Doswell 1979; Klemp and W eisman
1983; Moller, et al. 1994).

SIAA functions as a mesocyclone-based algorithm,
processing information only for those storms that are
associated with some sort of four dimensional azimuthal
shear in the Doppler radar radial velocity data.  SIAA depends
on the NSSL Mesocyclone Detection A lgorithm (MDA;
Stumpf, et al. 1998) to identify these shear regions.  

Following a fuzzy logic scheme sim ilar to that used
in (Lakshmanan and W itt 1997), c lassification of a storm as
a Supercell (fz_max), Marginal Supercell (fz_marg), or Non
Supercell (fz_min) is  done using both actual and hedged
values of two fuzzy membership values, fz_yes and fz_no,
in the following fuzzy c lassifiers:

fz_max = (fz_yes AND “not” fz_no)
OR
(“very much” fz_yes AND “very much” “not” fz_no)

fz_marg = (fz_yes AND fz_no)
OR
(“very much” fz_yes AND “very much” fz_no)

fz_min = (“not” fz_yes AND fz_no)
OR
(“not” “very much” fz_yes AND “very much” fz_no)

where “not” represents the fuzzy complement of the argument
(1 - fz_val), “very much” represents an overestimating hedge
of the argument (1 - e^ (-1 .5*fz_val))/(1 - e^(-1.5)), and
OR/AND represent the logical or/and operators, that return
the max/m in value of the expression.  

The base fuzzy membership values of fz_yes and
fz_no are determ ined by the following calculations:

fz_yes = (fz_sp_previous AND fz_sp)
OR
(“somewhat” fz_sp_previous AND “very much” fz_sp)
OR
(“somewhat” fz_sp)

fz_no = “not” fz_meso

w here “somewhat” represents an underestimating hedge of
the argument  (1 - e^(1.5*fz_val))/(1 - e^ (1.5)), and
fz_sp_previous is  the Supercell fuzzy membership value of
the current shear s ignature from the previous volume scan.
The fz_sp value represents  the intermediate feature-based
supercell fuzzy membership value for the current shear
s ignature.  This value is computed by applying a weighted
average aggregation to several other fuzzy m embership
values (Yager 1988):

fz_sp = .4*fz_meso + .3*fz_meso_life + .2*fz_bwer +
.1*fz_deviant_motion

with the following brief discussion about each term :

fz_meso - represents the m esocyclone strength fuzzy
membership value; com puted linearly using the 3-D meso
strength rank parameter for the current shear s ignature from MDA
(Stumpf, et al.  1998), w ith a membership range of 0 to 4;
assigned the largest weight because the mesocyclone is the most
c o m m o n  f e a t u r e  m e n t i o n e d  a c r o s s  s u p e r c e l l
definitions/discussions (B rowning 1963; Lemon and Doswell
1979; Klemp and W eisman 1983; Moller, et al. 1994)

fz_meso_life - represents the mesocyclone longevity fuzzy
membership value; computed linearly using the num ber of
m inutes s ince the first detection of the current shear s ignature,
with a membership range of 0 to  25 m inutes; assigned the next
largest weight because the persistence of the 3-D shear s ignature
is a distinctive attribute of supercells (Browning 1977; Moller, et
al. 1994)

fz_bwer - represents the s ignificance of any bounded weak echo
region associated with the current shear s ignature; retrieved from
the NSSL Bounded W eak Echo Region detec tion algorithm
(Lakshmanan and W itt 1997); assigned a relatively small weight
because of detection difficulty (Chisholm  1973; Lemon 1980)

fz_deviant_motion - represents the mesocyclone deviant
motion fuzzy membership value; computed linearly using the
angular difference between the current shear s ignature’s motion
vector and the 0-6 km shear vector, w ith a membership range of
0 to 25 degrees  (Maddox 1976; W eisman and Klemp 1984);
assigned the smallest weight because of MDA dependency

Note that the fz_no value in the fuzzy c lassifiers is
computed using the fuzzy complement of fz_meso; this formula
is used because a storm is not a supercell if it is  not associated
with a reasonably strong 3-D shear s ignature.

The structure of these rules highlights the feature-based
approach of this recognition scheme.  The presence of any one
feature in temporal or spatial isolat ion, no matter how strong, is
not suffic ient to c lassify the storm as a supercell.

2.2 Attention worthiness classification

The u lt im ate goal of SIAA is to draw attention to
thunderstorms that pose a s ignificant danger to the public.  To
this end, a second classification process is employed to alert the
user to s torm s  that exhibit varying degrees of danger, and thus
different priorities for increased base data sc rutiny.  This
classification process is also feature-based, but focuses on those
features that research has shown to be related to severe weather
production in supercells.  These features include:

1) a strong mesocyclone (Burgess, et al. 1979; Burgess and
Lemon 1991)
2) a hook echo (Forbes 1981; Markowski 2002)
3) an inflow notch (Browning 1964)
4) a bounded weak echo region (Chisholm  1973; Lemon 1982)
5) strong, or rapidly increasing low-level rotational velocity

The fuzzy c lassifiers used in this process  have the
same structure as those previously described for storm  type



classification (fz_max, fz_marg, fz_min).  However,
different fuzzy membership values are used in the fuzzy rule
base.

fz_yes = (fz_immediate_previous AND
fz_immediate)
OR
(“somewhat” fz_immediate_previous AND “very much”
fz_immediate)
OR
(“somewhat” fz_immediate)

fz_immediate = .35*fz_meso + .2*fz_hook_echo +
.15*fz_inflow_notch + .15*fz_bwer + .15*fz_llrotv

The fuzzy membership values of fz_meso and
fz_bwer are the same as those used in the storm type
classification process.  The new terms are described as
follows:

fz_hook_echo - represents the hook echo fuzzy
membership value; the inner border of the storm is extracted,
using 35 dBZ as a border threshold; a uniform  nonrational
approximating b-spline is fit to this border; a dynamically
sized, near-mesocyclone search region is investigated for
points of large positive curvature along the border, such that
the maximum curvature value closest to the mesocyclone is
accepted as the dominant s ignature; assigned a fairly large
weight because hook echoes have been associated with
tornadogenesis (Forbes 1981; Markowski 2002), and this
procedure has proven effective in detecting hook echoes

fz_inflow_notch - represents the inflow notch fuzzy
membership value; inflow notches are detected in the same
manner as hook echoes, except they are character ized by
points of large negative curvature; assigned a smaller weight
because of high frequency of notches in radar data

fz_llrotv - represents the low-level rotational velocity
significance fuzzy membership value; computed using the
maximum of two other fuzzy membership values: the current
maximum low-level rotational velocity (membership range
from 0 to 20 ms -1), and the increase in low-level rotational
velocity s ince the last volume scan (membership range from
0 to 10 ms -1); assigned a smaller weight because of MDA
dependency
  

The results of SIAA are reported in the form  of a
table and set of icons.  The table summarizes the fuzzy
membership values of the c lasses and features associated
with each MDA identified shear s ignature.  The icon is labeled
with the storm type class (“Sp” for Supercell, or “Mrg” for
Marginal Supercell), followed by the attention worthiness
class (“X” for Maximally Deserving, “R” for  M arginally
Deserving, or “N” for M inimally D eserving of immediate
attention).  The icon is also color coded based on the
attention worthiness c lassification. 

3.  PERFORMANCE RESULTS

The algorithm was tested on two large data sets: 31

May, 1996, KABR, and 3 May, 1999, KTLX.  Both of these cases
contained several supercells, marginal supercells, and non
supercells in a variety of configurations, orientations, and ranges.
Table 1 summarizes the testing results.

H M FA POD FAR CSI HSS

Strm 893 199 144 0.82 0.14 0.72 0.66

Attn 962 130 144 0.88 0.13 0.78 0.72

Table 1.  Summary of testing results for KABR-053196 and KTLX-050399.  Strm and
Attn are the storm type and attention worthiness classification results, respectively.  H
is hits, M is misses, FA is false alarms, POD is probability of detection, FAR is false
alarm rate, CSI is critical success index, and HSS is Heidke skill score (Wilks 1995).

Overall, these performance metrics suggest that the
algorithm performed very well in discrim inating between supercells
and non supercells, and between storms that deserve immediate
attention and those that deserve attention at a lower priority.  The
low FAR values and high CSI values show that SIAA has exhibited
a high degree of c lassification accuracy, while showing restraint
in the c lassification of w eaker storms.  The relatively high HSS
values show  that SIAA possesses a high degree of skill, as
compared to random classification.
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