
1. INTRODUCTION
A goal of ensemble forecasting is the assessment of the

predictability of a given flow. The generation of the initial per-
turbations which describe an ensemble is governed by two
principles: 1) the initial perturbations should be constructed
using some knowledge of the statistics of analysis errors and
2) the initial ensemble perturbations should share the structure
of those perturbations which amplify rapidly over the forecast
interval of interest (i.e., in those regions in which the sensitiv-
ity of the forecast to initial condition uncertainty is largest). 

A means of constructing ensembles is through the use of
singular vectors (SVs, also referred to as “optimal perturba-
tions”), which are those perturbations which amplify linearly
most rapidly for a given norm, for a given basic state, over a
prescribed time interval. In the construction of ensembles
using SVs, the choice of the analysis error covariance metric
as a measure of initial amplitude ensures that the SVs are con-
structed using knowledge of the characteristics of the analysis
error. The rapidly growing property of SVs in addition to the
fact that they are orthogonal at the initial and final (optimiza-
tion) times provides that the ensemble generated from the SVs
has maximum spread at the end of the optimization interval.

While there is evidence that there is some utility in the
use of SVs for ensemble prediction, there are limitations to
their efficacy. These limitations include computational cost,
the validity of the assumption of linear dynamics, and the
number of members needed to construct a reasonable ensem-
ble. Calculation of SVs for ensemble prediction is costly, as
several runs of both the linearized version of a numerical
weather prediction (NWP) model and its adjoint are required
in the iterative schemes used to solve the eigenvalue problem
that defines the SVs. The concern over whether linear dynam-
ics is appropriate arises when the initial perturbation is of large
amplitude, whether the perturbation grows so rapidly that its
amplitude is comparable to that of the basic state, or whether

processes within the model that are described by a conditional
(e.g., an “if-then” statement) change the sense of the condi-
tional - resulting in effects that are not described by the linear-
ization. Finally, there is no a priori means of identifying the
number of ensemble members needed in an ensemble for a
particular forecast.

In this presentation, we present an alternative means of
constructing an ensemble forecast using adjoint derived fore-
cast sensitivities. A forecast sensitivity is defined as the gradi-
ent of a response function (R, any differentiable function of
output of an NWP model) with respect to that model’s initial
condition, (e.g., the sensitivity is ). The adjoint of a

NWP model serves as a tool for the efficient calculation of
these sensitivities (Errico 1997). Forecast sensitivities allow
for the identification of those regions in which a small change
to the initial condition, , of an NWP model will have largest
effect on a particular aspect of that model’s forecast. The sen-
sitivity may be used to estimate the change in the response
function, , for a specified change in the initial condition,

,

, (1)

where  denotes the inner product of two vectors x and y. 
We suggest that given measures of analysis errors, and a

forecast sensitivity gradient for a specific response function
derived from a single integration of an adjoint model, we may
be able to estimate the likely ranges of values the response
function may take for a site or regionally specific forecast. The
approach to be outlined below, does not suffer from the com-
putation burden of the SV calculation, but concerns about the
validity of linear dynamics and the requisite number of ensem-
ble members remain. In this presentation, we explore the use
of adjoint-based forecast sensitivities and differences between
operational analyses to construct an ensemble of forecasts, for
specific forecast aspects. The goal of this research to deter-
mine whether the technique can provide forecasters with a
practical objective method for predicting the skill of a single
deterministic forecast assuming that the primary source of
forecast error is imperfect specification of initial conditions
rather than model error. As part of this work, we also seek to
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determine objective measures of the validity of the tangent lin-
ear assumption, to evaluate the dependence of the forecast
skill on characteristics of the larger scale flow, and to deter-
mine how large an ensemble is require to obtain a reliable esti-
mate of bounds on the forecast.

In section 2 we present the methodology and motivation
for this work. A summary and plan for further study is outlined
in section 3.

2. MOTIVATION AND METHODOLOGY
2.1 Motivation

Provided that the model being used to calculate the fore-
cast sensitivities may be viewed as “perfect,” motivation for
our approach comes from the results of a number of studies
that suggest that cases of major forecast errors may be
explained by defects in the initial analyses (e.g., Rabier et al.
1996). Because the “true state” of the atmosphere is not
known, and because the analyses used to initialize operational
NWP models may be viewed as best estimates for the state of
the atmosphere at a given time, then differences between the

analyses may be viewed as plausible errors in the analyses.

At any given analysis time, comparison of analyses
within and between operational centers reveals that there may
be considerable discrepancies between the analyses. An exam-
ple of such a comparison is found in Fig. 1 which shows dif-
ferences between the analyses of 650 hPa temperature from
the National Center for Environmental Prediction’s (NCEP’s)
Eta and Aviation models (Fig. 1a), and the Eta and United
Kingdom Meteorological Office (UKMET) global model (Fig.
1b). There are clearly regions on these difference maps where
discrepancies in the analyses exceed 1K. Furthermore, the dif-
ferences in 650 hPa temperature between the Eta and Aviation
models, are smaller than the differences between the Eta and
UKMET analyses at this analysis time. 

To the extent that we may use the differences between the
analyses as representing analysis uncertainty, knowledge of
this initial uncertainty together with knowledge of the forecast
sensitivity may be used to estimate changes in the response
function.

2.2 Methodology
While in principle, any differentiable function of the

model forecast state could be used for this study, for simplicity
in interpretation, and because of its potential operational inter-
est, the response function chosen is the temperature averaged
over the upper Midwestern United States on the sigma surface
σ = 0.85.

The procedure for constructing the ensemble forecasts
follows:

• 36 hr forecast sensitivities are calculated using the MM5
Adjoint Modeling System (Zou et al. 1997) in a horizontal
domain (identical to that shown in Fig. 1 with 48x70 grid-
points) with 10 evenly spaced sigma levels. The adjoint
model is run “dry” about a moist basic state calculated from
a forward run of the nonlinear model initialized using the
Eta model analysis interpolated to the MM5 grid. The
response function R is also calculated for the forward model
run.

• The analysis differences,  are determined from the dif-
ferences between the Eta, Aviation, UKMET, and Navy
NOGAPS model analyses interpolated to the MM5 grid.
From these four different analyses, we may construct 12 ini-
tial perturbations (6 positive, 6 negative).

• An estimate for the change in the response function, , is
calculated using (1) for each of the 12 initial analysis pertur-
bations. Because the calculation is linear, only 6 indepen-
dent (positive) perturbations are necessary, as the change
for the negative perturbations is determined by multiplying
the result by -1. From this calculation, bounds on the
response function may be determined from the largest 
calculated.

• As a check of the linearity, the change in R, , is evaluated
from differences in non-linear model runs using the positive
and negative perturbations. As an example, one may com-
pute 

(2)

using the perturbation derived from the Eta and Aviation
model analyses. This  may then be compared with
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Figure 1. Differences between analyses of 650 hPa tem-
perature in (a) NCEP’s Eta and Aviation models and (b)
NCEP Eta and UKMET models for 1200 UTC 29 Sep-
tember 2001. Contour interval 0.7oC with negative val-
ues dashed.
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.

For sufficiently large ensemble size, and for a ‘realistic’
estimate of the initial condition uncertainty, we may determine
those periods for which the chosen response function has
enhanced or decreased predictability.

Output and verification statistics from this study are
archived and available in near-real-time at the URL:

http://helios.aos.wisc.edu. 

3. SUMMARY AND OUTLINE OF FUTURE WORK
The use of adjoint based sensitivities in the construction

of site or regionally specific forecasts has been proposed and
the methodology of the approach has been outlined. The
approach takes advantage of uncertainties in operational anal-
yses to derive a set of initial condition perturbations that may
be used in conjunction with adjoint-derived forecast sensitivity
gradients to calculate bounds on the value of a particular fore-
cast aspect. Compared with the cost of SV generated ensem-
bles, which require a forward run of the NWP model, followed
by multiple integrations of the adjoint and tangent-linear ver-
sions of the NWP model, the computational cost of generating
a single adjoint-derived sensitivity ensemble is the cost of one
forward nonlinear model integration followed by one adjoint
model integration. Furthermore, we note that the choice of
response function allows for the forecast to be tailored to spe-
cific forecast needs (e.g., forecasts for a particular site or
region, forecasts of severe weather indices, wind speed, aver-
age temperature, precipitation) as long as the forecast problem
can be expressed as a differentiable function of the model out-
put. 

In order for this approach to be practical, several ques-
tions must first be addressed. These questions include:

1) What is the minimum number of initial perturbations
necessary to generate a useful forecast?

2) For N different analyses, there are N(N-1) initial per-
turbations (including both positive and negative) that may be
generated from simply taking analysis differences. At present
we have a relatively small number of different analyses. Are
there means of increasing the ensemble size using a limit?

3) What is the maximum length of time for which the
assumption of linear perturbation evolution is valid? 

4) Is there any relationship between the size of the fore-
cast bounds compared with the skill of the forecast?

In addition to these questions, we will explore the rela-
tionship between the size of the forecast bounds to both the
amplitudes of the sensitivity gradient and magnitude of the ini-
tial analysis differences.
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