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1. Introduction

The fundamental momentum vector equation for
an air parcel in any coordinate system fixed to the
earth is

dV
dt

= −1
ρ
∇P + g−2Ω̃×V + f (1)

where V, ρ, p are the velocity vector, density and
pressure, respectively, Ω̃ is the earth’s angular ve-
locity, f is a frictional-force and terms with Ω2 are
neglected, see, e.g., Dutton (1976). By simplicity we
consider a dry, isothermic and inviscid atmosphere,
f = 0. If we consider a uniform-mass spherical earth,
the gravitational acceleration is given by

g = −g
a2

r3
R

with g ≡ GMa−2, R being the vector from the
earth’s center to the parcel, r = ‖R‖, M and a are
the mass and radius of the earth and G is the grav-
itational constant. The usual coordinate system in
the standard mesoscale literature is a cartesian sys-
tem xyz with its origin at a point Pc in latitude φc

on the terrestrial sphere, the xy plane is normal to
g at Pc and the z axis is outside of the earth. It
is generally acknowledged that when the horizontal
scale of the motion L (|x| , |y| ≤ L ) is of order 103

km or smaller, the gravitational acceleration g can
be taken as a constant and normal to the xy plane.
Thus, the common form of the momentum equation
used in the mesoscale literature is

dv0

dt
= − 1

ρ0
∇p0 − gẑ−2Ω̃× v

0
, (2)
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where ẑ, x̂, ŷ are the unit vectors of the xyz system,
see, e.g., Pielke (1984). This is a simple equation to
perform theoretical analyses with the effects of ro-
tation included, which has been used by numerical
mesoscale models to treat problems with complex to-
pography. In this latter case the z coordinate is re-
placed by either a σz or σp coordinate to simplify
the treatment of lower boundary conditions. Fol-
lowing this scheme, mesoscale models such as MM5
(Duhia et. al., 1999), RAMS (Pielke et. al., 1992),
ARPS (Xue et. al., 1995), or HOTMAC (Yamada et.
al., 1981), which solve the momentum equation with
g ∼ −gẑ and coordinates xyσz or xyσp, have been
developed. Although some authors have pointed out
that the range of validity of the equation (2) may
be small (see, e.g., McVittie (1948), Dutton (1976)),
some applications of these models have considered an
horizontal domain D(L) = 2L×2L with L & 650 km,
whereas the results reported below suggest that the
approximation g ∼ −gẑ is valid on D(L0

max) with
L0

max . 100 km.

Two problems motivate the use of a large hori-
zontal domain D(L). The first is the necessity of in-
cluding the influence of propagating synoptic distur-
bances on the regional weather. For instance, Pielke
(1994) suggests a domain of at least 5000 km on a
side to reasonably resolve some disturbances in win-
ter. The second is that the boundary errors induced
by artificial boundaries do not contaminate the re-
sults with a large D(L). The solution of these prob-
lems is incompatible with the small domain of validity
D(L0

max) of the numerical models that solve (2) in
xyσ coordinates. The answer to this conflict is the
use of the exact g. If a parcel is at the point (x, y, z)
at time t we have R = xx̂ + yŷ + (z + a)ẑ and the
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correct momentum equation is

dv
dt

= −1
ρ
∇p−g

a2

r3
[xx̂+yŷ+(z+a)ẑ]−2Ω̃× v, (3)

whose numerical implementation requires a small
modification of the current mesoscale software. Al-
though the coordinate system xyz is not well suited
for practical applications to large-scale problems, the
equation (1) is valid for any coordinate system ro-
tating with the earth and this includes the xyz sys-
tem. Thus, the eq. (3) together with the conser-
vation equations of mass, energy, moisture and the
equation of state, provides the correct meteorological
fields when the correct initial and boundary condi-
tions are used, independently of the magnitude of
the domain D(L). This is illustrated below, where a
simple problem shows that the eq. (3) can yield the
correct pressure field on the whole earth.

Map projections have been used in atmospheric
modeling with the purpose of including the earth
sphericity into model equations (Haltiner, 1971). Ac-
cordingly, some mesoscale computational systems,
such as MM5 and RAMS which use coordinates xyσz

or xyσp, include metric factors in the horizontal
derivatives of model equations to consider map pro-
jections. This has motivated the use of such compu-
tational systems on domains D(L) with L as large
as 885 km (Fast and Zhong, 1998) or 1665 km (Ser-
vicio Meteorológico Nacional (SMN), 2002). In prin-
ciple, the use of map projections generates coordi-
nate systems xpypzp which are legitime to solve model
equations. However, we show that if xp, yp, zp are
taken as correct approximations of x, y, z, respec-
tively, the horizontal momentum equations omit the
gravitational acceleration and, therefore, their relia-
bility region is similar to D(L0

max).

2. Analysis of the approximation g ∼ −gẑ

There are three domains which illustrate the magni-
tude of the domains used in mesoscale modelation,
namely, the domains Da, Db with La ∼ 665 km and
Lb ∼ 882 km were used in the study of regional trans-
port of atmospheric pollutants (Yamada et. al., 1989;
Fast and Zhong, 1998) and Dc with Lc ∼ 1665 km
is used in the operational meteorological analysis of
México (SMN, 2002). The solution eq. (3) together

with the equation of state and the boundary condi-
tion p = p0 at x = y = z = 0 is

ps(r) = p0e
−ba(1−a/r) b ≡ g/RT0

with r = [x2 +y2 +(z +a)2]1/2, which is the pressure
field on the whole terrestrial sphere. This shows that
the eq. (3) in the xyz system is valid on any domain
D(L) indeed. Hence we get the pressure value on
the isobar f that passes through the z−axis point
(ξ = 0, z = z0), namely,

p(x = y = 0, z0) = p0 exp[−bz0/(1 + z0/a)]. (4)

The solution of eq. (2) with p0 = p0 at x = y = z = 0
is

p0(z) = p0e
−bz.

Consider the relative error of p0 on the terrestrial
sphere, r = a, as a function of the distance ξ between
the corner of D(L) and the origin x = y = z = 0,
ξ =

√
2L, namely, ∆p0(ξ) = (p0/p− 1)100 with

z = −a +
√

(a + z0)2 − ξ2

and p is given by (4). The values T0 = 300 oK, R =
287 J/kgoK, p0 = 1013 mb, g =9.8 ms−2 and a =
6378 km yield b = 0.11382 km−1. The error ∆p0 is
less than 20% for ξ ≤ ξ0

max ∼ 160 km and increases
rapidly from 20 to 300% as ξ goes from ξ0

max to 400
km. This suggests that ξ0

max . 160 km provides the
upper bound L0

max . 113 km for the reliability do-
main D(L0

max) of the approximate equation (2).

3. Equations from map projections

To analyze the role of map projections consider
the formal definition of the projection coordinates
xpypHp. Let xpyp be a cartesian coordinate system
on a projection plane P which is normal to the Hp

axis. The conformal projection of a point (λ, φ) on
the terrestrial sphere is the point (xp, yp) given by a
pair of projections equations

xp = Px(λ, φ) yp = Py(λ, φ). (5)

Usually, the center (λc, φc) of the domain D is pro-
jected on the origin of the xpyp system, xp(λc, φc) =
yp(λc, φc) = 0, and the eastward parallel circle and



the northward meridian on (λc, φc) are projected on
the positive xp and yp axes, respectively. If a point
in physical space has spherical coordinates (λ, φ, r)
its coordinates xp, yp are given by (5) and Hp is de-
fined by Hp = r − a. Thus we have four equivalent
sets of coordinates to define the position of a par-
cel, namely, (x, y, z), (X, Y, Z) and (λ, φ, r) which
have a simple geometrical interpretation in physi-
cal space while (xp, yp,Hp) are coordinates in an ab-
stract space. The governing equations in coordinates
xpypHp are obtained from the equations in spherical
coordinates (Haltiner, 1971). The solution of these
equations with the pertinent boundary and initial
conditions generates the meteorological fields in the
xpypHp space but in order to analyze such fields in
physical space we have to apply the pertinent coor-
dinate transformations to obtain the fields in coordi-
nates x, y, z or λ, φ, r, for details see Nuñez (2002).
However, the approximation

xp ∼ x yp ∼ y Hp ∼ z

is used to work on the cartesian coordinate system xy
with the expectation that the map projection consid-
ers the spherical shape of the earth (see also Perkey,
1986). If this approximation is used we to solve equa-
tions like those reported by Haltiner (1971) where
xyz play the role of xpypHp. For instance, the stereo-
graphic projection yields horizontal momentum equa-
tion

du∗p
dt

− v∗p

(
f +

yu∗p − xv∗p
2a2

)

=
w∗p
a

[
(1 + sin φ)Ωy − u∗p

]−mα
∂p∗p
∂x

(6)

(Haltiner, 1971). We see that the horizontal momen-
tum equations have no gravity-force term and there-
fore such equations are similar to the equation (2), a
conclusion verified by the solution for an isothermic
and hydrostatic atmosphere. In this case the pres-
sure field with p∗p = p0 (1013 mb) at x = y = z = 0 is
p∗p = p0e

−baz/(z+a) which is essentially the pressure
field p0 from the equations (2) if we consider |z| ¿ a.
Thus we can say that the map-projection equations
like (6) are valid on D0 . 200×200 km2.

4. Summary

In agreement with McVittie (1948) and Dutton
(1976), the results of section 2 suggest that the
eq. (2) is valid on a horizontal domain D(L0

max)
. 200×200 km2. Of course, the example of an hy-
drostatic atmosphere ignores important factors con-
trolling a real flow such as the stratification and,
mainly, the time evolution which can generate im-
portant qualitative differences between the flows from
eqs. (2) and (3) because of their nonlinearity. How-
ever, the numerical modeling of some mesoprocesses
requires the use of a large domain D(L) (i) to in-
clude the influence of propagating synoptic distur-
bances on the regional weather and (ii) to reduce the
error from the lateral boundary conditions inherent
to limited-area modeling. In principle, this conflict
can be solved with the use of the momentum equation
(3), which is valid on any domain D(L). In practice,
D(L) will be limited by (i) the available data to de-
fine the initial and boundary conditions and (ii) the
computational resources. For example, if L = 500 km
and the height of the troposphere on the terrestrial
sphere is H = 18 km we have to use a tridimensional
model region with a height HM = |z|max + H ∼ 57.3
km, where

|z|max =
∣∣∣−a +

√
a2 − 2L2

∣∣∣

and a = 6378 km, which increases significantly
the computational cost and probably the data from
global prediction models are insufficient to define ini-
tial conditions.

If xyz (x̂ŷẑ) are denoted by x1x2x3 (x̂1x̂2x̂3), re-
spectively, and we set x̃1 = x1, x̃2 = x2, x̃3 =
x̃3(x1, x2, x3, t), the contravariant form of the exact
g is

g = gjx̂j = gj ∂x̃i

∂xj
τi

where g1 = −ga2xr−3, g2 = −ga2yr−3, g3 =
−ga2(z+a)r−3 and τi are the covariant vectors from
the x̃j ’s. Hence, the contravariant form of eq. (3) is

∂ũi

∂t
= −ũj ũi

,j − G̃ijθ
∂π

∂x̃j
+ gj ∂x̃i

∂xj
− 2εijlΩj ũl, (7)

where frictional forces are neglected, while the con-



travariant form of eq. (2) is

∂ũi

∂t
= −ũj ũi

,j − G̃ijθ
∂π

∂x̃j
− ∂x̃i

∂x3
g − 2εijlΩj ũl, (8)

(Pielke, 1984). The practical limitations discussed
above impose the use of a domain D(L) with L ≤ 500
km. In this case we can use the linear approximation
g1 ∼ −gx/a, g2 ∼ −gy/a, g3 ∼ −g in eq. (7).

The horizontal momentum equations reported in
some references have terms with g but it does not
come from the use of the correct gravity acceleration
g (2). For instance, from the equation (8), σz =
s(z − zG)/(s − zG), the hydrostatic relation and the
chain rule Pielke (1984) obtains

∂ũ1

∂t
+ ũj ∂ũ1

∂x̃j
+ ũj

∂ũ1

∂x̃j
= −θ

∂π

∂x̃1
+ g

σ − s

s

∂zG

∂x

−f̂u3 + fu2

where the terms with g1, g2 or their linear approxi-
mation are absent.
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Numerico Regional (Modelo MM5),
http:// smn.cna.gob.mx/ productos/mm5/
htm/pag7773.htm
Yamada T., J. Met. Soc. Japan, 59 (1981) 108-122.
Yamada T. and Bunker S., 1988, J. Appl. Meteor.
27, 562-578.
Yamada T., Kao J. C.-Y. and Bunker S., 1989, At-
mos. Environ. 23, 539-554.
Xue M., Droegemeler K. K., Wong V., Shapiro A.
and Brewster K., 1995, Advanced Regional Prediction
System (ARPS) Version 4.0 User’s Guide. http://
wwwcaps.ou.edu/ARPS/.




