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1. Introduction

It is known that ”one-way” lateral boundary con-
ditions constrain the growth of initial perturba-
tions in limited-area ensemble forecasts (Pae-
gle et al., 1997, references therein). External
boundary conditions (LBCs) typically lack fine-
scale features, and in the case of ensemble fore-
casts, also lack consistent perturbations. Pertur-
bations growing on the nested domain become
displaced by the coarsely resolved LBCs (Errico
and Baumhefner, 1987; Vukicevic and Paegle,
1989) while the domain size itself determines the
maximum wavelength attainable by the perturba-
tions (Vukicevic and Errico, 1990).

Another aspect of the boundary condition prob-
lem that has previously received little attention is
the impact of LBC update interval (Warner et al.,
1997). Commonly used linear interpolation be-
tween relatively infrequent LBC updates acts as
a filter that exacerbates the scale deficiency prob-
lem.

Short-range ensemble forecast experiments
have shown that the ensembles often are under
dispersive. That is, the verifying analysis does
not fall within the range of possibilities forecast
by the ensemble. Du and Tracton (1999) found
that a regional ensemble with a larger domain
produces greater spread than does an ensem-
ble with a smaller domain. Furthermore, they
found that the contribution of different LBCs to
ensemble spread increases with time while that
of initial condition perturbations decreases with
time. These and other similar results (Hamill and
Colucci, 1997; Hou et al., 2001; Stensrud et al.,
2000) demonstrate that, with time, the spread
of the LAM ensemble forecast becomes increas-
ingly determined by the spread in the global en-
semble as high frequency and small scale com-
ponents are “swept” from the LAM domain.

To help restore the error variance lost at small
scales, we propose to apply coherent perturba-
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tions to the LBCs at scales unresolved by the ex-
ternal model. The amplitude of such perturba-
tions will be chosen to mimic the exponential er-
ror growth curves generated from simulations in
unbounded domains. The use of more frequently
updated boundary conditions and the inclusion of
small-scale boundary perturbations will be shown
to enhance the dispersion for limited-area ensem-
ble forecasts.

In this paper, necessary analysis tools are in-
troduced along with the parameterized potential
vorticity model used in this study. We will then
present results on the effect of LBC update in-
terval on the nested-grid ensemble dispersion.
Other results will be presented at the conference.

2. Ensemble MSE and Dispersion

Before introducing the underlying hypothesis for
this work in section 3., it is useful to review stan-
dard ensemble statistical methods. Consider N
members of an ensemble forecast f(t) and cor-
responding analyses a(t) given as vectors on a
p-element grid. Although identical in a regular
ensemble configuration, let the analyses corre-
sponding to each forecast be unique for gener-
ality. The ensemble mean-square error (MSE) is

V 2 =
1
N

N∑
i=1

‖fi − ai‖2 (1)

where ‖ · ‖2 is the average sum of squares (dot
product) over the grid (Stephenson and Doblas-
Reyes, 2000). To gain further insight, add and
subtract the ensemble mean forecast f̄ and anal-
ysis ā inside (1), then expand and manipulate so
that

V 2 =
1
N

N∑
i=1

‖fi − f̄‖2 +
1
N

N∑
i=1

‖ai − ā‖2 (2)

− 2
N

N∑
i=1

1
p

(fi − f̄) · (ai − ā) + ‖f̄ − ā‖2.

Note that an analogous expression may be found
by adding and subtracting the grid mean (scalar)



forecast and analysis for each ensemble member,
multiplied by the identity vector. The variance and
covariance terms in (2) may be combined to write
the total biased error variance

σ2 ≡ V 2−‖f̄−ā‖2 =
1
N

N∑
i=1

∥∥∥(fi − ai)− (f − a)
∥∥∥2

.

(3)
Ensemble forecasts usually are verified against

one analysis. In that case, ai = ā = a, and both
(2) and (3) reduce to

V 2 =
1
N

N∑
i=1

‖fi − f̄‖2 + ‖f̄ − a‖2

= D2 + ‖f̄ − a‖2, (4)

where D2 is the ensemble dispersion, or spread.
This result shows that the squared error of the
ensemble mean is less than the ensemble MSE
V 2 because ensemble dispersion allows unpre-
dictable components of flow to be averaged out
in the ensemble mean (Leith, 1974; Stephenson
and Doblas-Reyes, 2000). Note that when com-
paring all ensemble members to one analysis as
in (4), D2 = σ2.

As initial forecast errors grow with time, ensem-
ble forecast members become uncorrelated with
analyses and their covariance is zero. If fore-
casts are unbiased and have the same variance
as the analyses, then the expected value of (2)
converges as V 2 = 2D2. This is the classic result
obtained by Leith (1974), and motivates the com-
mon practice that total error variances be normal-
ized by the climate variance of analyses.

3. Impact of LBCs on Total Error Variance

Equation (4) reveals a linear, additive relation be-
tween V 2 and D2, thereby providing a direct link
between ensemble MSE and ensemble disper-
sion. The following argument highlights changes
in ensemble MSE (hence, ensemble dispersion)
resulting from coarsely resolved lateral boundary
forcing.

Suppose we decompose the forecast and anal-
ysis fields on the nested domain into longwave
and shortwave components so that f = fl + fs
and a = al + as. The shortwave components
are those scales not resolved by the external
model, while longwave components are those
scales commonly resolved on both external and
internal grids.

Let the shortwave components of the forecast
be decomposed further to include losses by ad-

vective “sweeping” and regeneration by nonlin-
ear dynamic downscaling so that fs = fα + fη.
With time, fα components are displaced by the
coarsely resolved LBCs, suggesting the assump-
tion that their amplitudes tend toward zero. Note
that temporal interpolation of LBCs acts as a filter
that may lengthen the scale fα components. Fol-
lowing from (1) while dropping i subscripts, the
resulting impact of LBCs on the ensemble MSE is

V 2 =
1
N

N∑
i=1

‖fl +���
0

fα + fη − al − as‖2

=
1
N

N∑
i=1

‖(fl − al)‖2 +
1
N

N∑
i=1

‖fη − as‖2

+
2
N

N∑
i=1

1
p

(fl − al) · (fη − as). (5)

This equation provides insight to the hypothe-
sis that limited-area models are able to produce
fine-scale information not present in the coarse-
grid external model. The extent to which small-
scale wave components are skillfully regenerated
will depend on the size and location of the nested
domain and on the LBC update interval. Thus, an
important aspect of this work is to determine the
relative contribution of the regenerated variance
compared to the total variance.

To quantify the contributions of each term in
(5), variances are computed spectrally using the
method outlined by Errico (1985). Specifically, if
F (k) is the discrete Fourier transform of the error
field, then (3) may be obtained as

σ2 =
1
N

N∑
i=1

K−1∑
k=1

2 |Fi(k)|2 , (6)

where k = 1, . . . ,K − 1 are the set of Nyquist
resolved wavenumbers.

Skill is measured by normalizing variances
within different wavelength bands by the climato-
logical variances obtained spectrally. When nor-
malized in this manner, results may be compared
to other studies such as Laprise et al. (2000).

4. Parameterized Potential Vorticity Model

A simplified model is used for this work to help
isolate only those errors associated with LBCs in
a controlled and efficient manner. Emphasis is di-
rected towards large scale mid-tropospheric flow
since these are the patterns that are important
for accurate placement of developing mesoscale



Figure 1: PPV model simulation on a 25 km grid,
15 days after initializing with a perturbed shear flow.
Streamfunction contours are shown in both panels
(ψ × 106 m2s−1). Shading in (a) indicates relative vor-
ticity greater than ±2×10−5 s−1. Shading in (b) shows
wind speeds greater than 20 m s−1. Boxes show out-
lines of four different sub-grids used for singly-nested
model configurations.

and smaller features (Paegle et al., 1997). Fur-
thermore, we wish to exclude from consideration
in this work the hypothesis that predictability is
enhanced under the influence of surface forcing
(Van Tuyl and Errico, 1989; Warner et al., 1989).

The single-level grid point model runs on a mid-
latitude beta channel and is based on an approx-
imation of the quasi-geostrophic potential vortic-
ity equation. Let ξ ≡ ζ − λ2ψ define a pa-
rameterized relative potential vorticity, where ζ
is the relative vorticity, ψ is the streamfunction,
and λ = 7.071 × 10−7 m−1 is an inverse length
scale based on the Rossby radius of deformation
(Holton, 1979). The parameterization represents
the first-order effects of vertical motions in a baro-
clinic atmosphere (vortex stretching). The param-
eterized potential vorticity (PPV) model is

∂ξ

∂t
= −∂ψ

∂x

∂ξ

∂y
− ∂ψ

∂y

∂ξ

∂x
− β ∂ψ

∂x
− ν∇4ξ. (7)

If λ = 0 the PPV model reduces to the standard
barotropic vorticity model, except for the 4th order
numerical diffusion term. An example of the vor-
ticity and streamfunction fields produced by the
PPV model is shown in Fig. (1).

5. Impact of Nesting Interval

The impact of nesting interval is explored in a per-
fect model configuration following the method de-
scribed by Laprise et al. (2000). Perfect initial
conditions and LBCs are provided by an external

control simulation that may be low-pass filtered
to remove power at small scales. Initial condi-
tions are not perturbed, so the only source of er-
ror is that due to interpolation between available
LBC updates and the wave absorbing zone used
for “one-way” nesting. Normalized variances for
the resulting fields were computed spectrally as
discussed above and averaged over 100 cases.
Dispersion statistics from planned ensemble ex-
periments should appear similar to results shown
here.

A frequency analysis of a time series of ξ at a
single grid point reveals that 99.6% of the vari-
ance is explained by waves having periods longer
than 3 hours. The perfect model simulations were
consistent, showing that boundary-induced errors
were minimal when LBCs are updated at intervals
of 3 hours or less. Errors become much larger
when LBCs are updated every 6 hours as shown
in Fig. 2.

In an otherwise perfect model simulation, LBC
interpolation causes inconsistencies between the
external and internal fields. Attempts to smooth
the discontinuity across the boundary zone gen-
erates a small scale wave that enters the nested
domain. From there, the disturbance may ei-
ther dissipate or amplify, depending on its am-
plitude and stability of the ambient flow. Com-
pared to the large domain, boundary-induced er-
rors on the medium and small (center) domains
grow faster with time and stabilize at different sat-
uration points (Fig. 2). On the small (south) do-
main, located outside the main jet profile, the flow
is weak and errors grow more slowly with time.

In other experiments, LBCs were low-pass fil-
tered to examine the ability of the nested grid
to regenerate short wavelengths, even in the
presence of continued coarse-resolution bound-
ary forcing. Figure (3) shows some recovery of
skill at small scales due to dynamic downscaling.
However, after four days the errors have about
the same level of error as the previous case, in-
dicating that LBC errors have swept through the
domain. In all cases, longwave components are
minimally affected since the LBC is well-sampled
at these scales.

6. Summary

The goal of this work is to quantify the extent to
which coarsely resolved LBCs modify error vari-
ances (hence, ensemble dispersion) for limited-
domain solutions. If it can be shown that ensem-
ble dispersion is deficient due, in part, to coarsely
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Figure 2: Normalized vorticity variances at 250 km
wavelength intervals for perfect model simulations run
on a 50-km grid with LBCs low-pass filtered to ex-
clude wavelengths <400-km. LBCs are updated every
6 hours.
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Figure 3: As in Fig. 2, except initial conditions are also
low-pass filtered.

resolved LBCs, then a procedure will be devel-
oped to add small scale LBC perturbations using
parametric exponential error growth curves.

Error growth curves obtained from ensemble
simulations on the external periodic channel do-
main were not yet complete at the time of writ-
ing. These results, along with a more developed
method for perturbing LBCs at unresolved scales
using error growth curves will be presented at the
conference.
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