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1. INTRODUCTION

Most large-scale NWP and climate models are
based upon the hydrostatic primitive equations
and use a pressure-based terrain-following
coordinate in the vertical. Phillips (1957)
introduced the normalised pressure coordinate
o = p/pswhere p is the pressure and the

subscript s denotes the surface value, hence
terrain following. The sloping surfaces are not
ideal away from the surface so it is usual to
allow the coordinate surfaces to gradually
flatten until they become constant pressure
surfaces, a hybrid system, Simmons and
Burridge (1981). Kasahara (1974) derived the
dry hydrostatic primitive equations for a
generalized vertical coordinate and his
methodology can be found in standard
textbooks for NWP. These equations are usually
modified to include moist effects by including
transport equations for moist quantities and
using virtual temperature rather than
temperature in the pressure gradient terms and
the adiabatic conversion terms, if present. It is
not usually acknowledged that for the moist
equations the continuity equation also changes
as will be explained in the next section. These
changes take into account pressure changes due
to moist effects, which are not usually allowed
for in large-scale models. The model used by
Méteo-France does include an option to include
pressure changes due to moist fluxes. This is
described, in an unpublished manuscript
written before 1990 . The following analysis
shows how these moist terms arise naturally if
the equations are derived from first principles.
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The present work arose out of investigations
into the use of moist variables in a new model at
the Met Office. It was not always clear which
model components (and data used by the
model) were meant to be mixing ratios or
specific quantities. Clarifying these issues
revealed what may be an oversight in the usual
derivation of the moist hydrostatic primitive
equations.

2. THE CONTINUITY EQUATION

The continuity equation for dry air with density
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Following Kasahara (1974), transformingto a
system in a generalized vertical coordinate 7,

the divergence term becomes
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and the continuity equation then becomes
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In deriving the hydrostatic primitive equations,
we normally use the hydrostatic equation in the
form
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However, the hydrostatic equation for a moist
atmosphere is
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The subscripts v,cl,cf denote water vapour,

cloud water and cloud ice respectively and the
summation is over the moist quantities. We
could add any number of constituents without
affecting the subsequent analysis. Each of the
moisture quantities has a transport equation of
the form
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the source/sink terms. Specific quantities may
be used instead of mixing ratios. Returning to
our hydrostatic equation, we replace p by
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and our revised first term of the continuity
equation becomes
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Using the transport equation for m, and
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continuity equation is
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Thus comparing equations (1) and (2) we see
that the moist hydrostatic primitive equations
should include the effects of moist processes as
source/sink terms in the continuity equation.
These terms are omitted from most moist
hydrostatic primitive equation models and also
in non-hydrostatic models having the same
derivation of the continuity equation. The effect
of these terms is likely to be small in relation to
the pressure tendencies and are probably safely
ignored for large-scale weather forecasting. For
smaller scales (i.e. models at very high
resolution) the local pressure tendency might be
dominated by the precipitation flux so these
terms become more important.

In the tropics, where there is almost continuous
evaporation at the sea-surface, the terms act in
the same sense all the time and the evaporation
will peak around local midday. These terms may
therefore be more important for long climate
runs.

Including these terms in a semi-implicit model
should be relatively straightforward since the
source/sink terms should be available from the
various physical parametrizations. In an explicit
scheme using fractional timestepping, the
source/sink terms would need to be
apportioned over the timestep for each
calculation of the pressure tendency and vertical
velocity.
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