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1.  INTRODUCTION 
 

Atmospheric state estimation on the scales of deep, 
moist convection will be an important component of 
operational high-resolution numerical weather prediction.  For 
the foreseeable future, radar measurements of Doppler 
velocity and reflectivity will continue to be the primary source 
of volumetric observations on these scales.  A variety of 
techniques have been developed for retrieving the wind, 
temperature, and moisture fields from radar observations of 
convective storms (e.g., Armijo 1969; Hane et al. 1981; 
Brandes 1984; Roux 1985; Ziegler 1985; Shapiro et al. 1995; 
Sun and Crook 1997, 1998; Weygandt et al. 2002a,b).  These 
retrieval techniques range from direct solutions of limited sets 
of governing equations to data assimilation methods 
employing a 3D cloud model. 

Recently, Snyder et al. (2001) evaluated a relatively new 
data assimilation method – the ensemble Kalman filter 
(Evensen 1994; Houtekamer and Mitchell 1998) – for 
convective scale retrievals and forecasts.  In tests on a 
simulated supercell thunderstorm, the ensemble Kalman filter 
scheme was stable and was able to reproduce rather accurately 
the original model fields from a limited number of 
observations (i.e., perturbed samples from the control 
simulation) (Snyder et al. 2001).  An attractive feature of the 
ensemble Kalman filter approach is that once a forward model 
has been developed, relatively little additional coding is 
necessary to assimilate observations into the model.  
Therefore, this approach is being considered as an alternative 
to four-dimensional variational (4DVar) data assimilation, 
which requires the design and coding of an adjoint model. 
 In this paper, we describe the first attempts to use the 
ensemble Kalman filter to retrieve the wind, temperature, and 
other fields from radar observations of a real thunderstorm.  
For the retrievals, we selected the 17 May 1981 Arcadia, 
Oklahoma tornadic supercell case, which includes 
observations from two 10-cm research Doppler radars that 
were separated by 40 km and that were 25-55 km from the 
target storm (Dowell and Bluestein 1997).  Although our focus 
here is on the basic issues of using the ensemble Kalman filter 
on real data, we also plan to evaluate for the same case the 
strengths and weaknesses of the ensemble Kalman filter 
compared to the 4DVar method (Crook et al. 2002) and a 
single-Doppler retrieval method (Weygandt et al. 2002a, b). 
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2.  DESCRIPTION OF EXPERIMENTS 
 
 The data assimilation methodology involves the 
following steps:  generating an ensemble of initial model 
states, integrating the ensemble members forward in time (i.e., 
making forecasts), and using the ensemble Kalman filter to 
update the ensemble members at each time when observations 
are available.  We use the anelastic model of Sun and Crook 
(1997), which includes a simple warm rain microphysical 
scheme for moist processes, to produce the forecasts.  The 
model domain in these experiments consists of 51 grid points 
at 2000-m intervals in each horizontal direction and 34 grid 
points at 500-m intervals in the vertical. 
 The base state sounding used in the simulations (Fig. 1) 
includes a number of modifications to the raw sounding taken 
from Edmond, Oklahoma at 1430 CST (Dowell and Bluestein 
1997).  Based on our mesoscale analysis of multiple 
soundings, instrumented tower data, and winds synthesized 
from the dual-Doppler observations, we attempted to construct 
a sounding (Fig. 1) that is more representative of the 
environment of the mature Arcadia storm. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.  Sounding corresponding to the base state in the 
simulation.  Heights (km) are relative to the lowest model 
level (250 m AGL). 
 
 In a sequential data assimilation scheme such as the 
ensemble Kalman filter, the retrieved model state after only a 
few radar volumes have been processed should be rather 
sensitive to the initial state of the model, especially in the 
current experiments, which involve assimilation of 
observations of a mature storm.  (An operational data 
assimilation procedure might be initialized with the fields 
from a prior forecast.  However, the current assimilation of a 
limited research dataset involves a more ad hoc initialization 



procedure.)  In the control assimilation experiment, we used 
the 3-D winds from a dual-Doppler wind synthesis (Dowell 
and Bluestein 1997) to estimate the model state (“first guess”) 
at the initial time of the assimilation.  We initialized the 
moisture fields in a manner similar to Weygandt et al. 
(2002b).  We estimated the rain water mixing ratio at the 
initial time with the following empirical relationship (Sun and 
Crook 1998): 
 

ρ/1045.3 571.06 Zqr
−×= ,     (1) 

 
where rq  is the rain water mixing ratio in g g-1, Z  is the 
observed reflectivity factor in mm6 m-3, and ρ  is the density 
in g kg-1.  Since very high magnitudes of reflectivity in the 
observed storm were associated with hail, but the model does 
not include ice physics, we truncated the calculation in (1) at 
55 dBZ.  Throughout most of the model domain, we initialized 
the total water as the sum of rq  calculated in (1) and the 
sounding value of the water vapor mixing ratio.  However, in 
regions of rq >0.1 g kg-1, we increased the relative humidity.  
In updraft regions (grid points where the vertical velocity from 
the dual-Doppler synthesis was >5 m s-1), we increased the 
relative humidity to 100%.  Otherwise, we increased the 
relative humidity to 80% within the precipitation region. 

We produced an ensemble of 100 initial model states for 
the assimilation experiments by adding perturbations to the 
first guess state.  To initialize the state of a particular 
ensemble member, we added Gaussian noise to the first guess 
over a limited (40 km wide) region centered on the observed 
precipitation core of the storm.  The standard deviation of the 
random noise was 5 m s-1 for the horizontal velocity 
components and 5 K for temperature.  We linearly varied the 
standard deviation of the noise in vertical velocity from 0 at 
the surface and tropopause to 10 m s-1 at 7 km AGL.  We did 
not add noise to the first guess estimates of rain water and 
total water.  Although the magnitude of the initial velocity 
noise was relatively high, by the time that the first 
observations were assimilated (i.e., after 4 min of model 
integration), the ensemble standard deviation of radial velocity 
had decreased to a magnitude comparable to the expected 
Doppler measurement error (~2 m s-1). 

Our initial experiments involved assimilation of only 
observations of Doppler velocity (although reflectivity 
information was used for the first guess state).  We used a 
1000 m Cressman radius of influence to interpolate the raw 
velocity observations within each sweep to the horizontal 
locations corresponding to the model scalar grid points.  (Each 
radar collected volumes consisting of sweeps at 12-15 
different elevation angles.)  Interpolating the observations 
within each sweep separately, rather than interpolating the 
entire volume to a standard Cartesian grid, allows one to retain 
the actual heights of the observations on the conical sweep 
surfaces; this method of data handling minimizes errors 
associated with vertical interpolation/extrapolation (Sun and 
Crook 2001).  We assumed that observation errors were 
uncorrelated; therefore, observations were processed one at a 
time.  The covariances among perturbations in the model 
states were computed locally rather than globally (Houtekamer 
and Mitchell 1998).  We used a spherical influence region 
with a radius of 4 km around each observation. 

3.  RESULTS 
 

The control experiment was initialized, as described in 
the previous section, at 16:30 CST.  Then, interpolated 
observations from both radars were assimilated at 16:34, 
16:38, 16:43, and 16:47.  At each analysis time, all of the 
observations from the Cimarron radar (southwest of the storm) 
were processed before those from the Norman radar (south of 
the storm). 

Although a comparison of the retrieved state to the truth 
is not possible for a real data case, one may evaluate the 
quality of the retrieval by comparing forecasts from the 
retrieved states to the observations.  The differences (the 
values in the “before” columns in Table 1) between the 
observed radial velocities and the corresponding velocities in 
the model after 4-5 min forecasts generally decreased with 
time, as would be expected in a successful assimilation.  
However, some of the other ensemble statistics are less 
encouraging.  In particular, the standard deviation in radial 
velocity among the ensemble members (Table 2) decreased 
rather quickly and was relatively small compared to both the 
expected observation error (~2 m s-1) and the computed 
difference between the forecast and the observations (Table 1).  
Most of the observations were outside the envelope of forecast 
states in the ensemble (not shown). 
 
Table 1.  RMS difference (m s-1) between the observed radial 
velocity and the ensemble mean radial velocity, both before 
the Kalman filter (i.e., after the forecast) and after the Kalman 
filter, for the control experiment.  The differences are with 
respect to observations from the Cimarron and Norman radars. 
 

 Cimarron 
before filter 

Cimarron 
after filter 

Norman 
before filter 

Norman 
after filter 

16:34 5.2 2.9 6.3 3.6 
16:38 5.4 3.9 6.3 4.7 
16:43 4.1 2.9 4.9 3.5 
16:47 3.9 3.0 4.9 3.6 
 
Table 2.  Ensemble standard deviation (m s-1) of radial 
velocity at the observation points for the control experiment.  
 

 Cimarron 
before filter 

Cimarron 
after filter 

Norman 
before filter 

Norman 
after filter 

16:34 1.7 0.9 1.5 0.9 
16:38 1.1 0.7 0.9 0.7 
16:43 1.0 0.6 0.8 0.6 
16:47 0.8 0.5 0.7 0.5 

 
The minimum temperature perturbation (-3.9 K) in the 

retrieved cold pool at 0.25 km AGL (Fig. 2a) is comparable in 
magnitude to the minimum temperature perturbation (-5.5 K) 
measured by an instrumented tower in the Arcadia storm at 
that level (Dowell and Bluestein 1997).  Since we were 
curious whether the cold pool developed primarily as a result 
of evaporation of rain in the forward model integration or as a 
result of the adjustment of the model states with the Kalman 
filter, we conducted a second assimilation experiment similar 
to the control experiment, except that we did not use the same 
moisture specification step in the initialization at 16:30.  
Instead, we initialized the model with no rain water and with 
the magnitude of water vapor in the environmental sounding. 



The results of the assimilation that included no rain 
water in the initial state indicated relatively small temperature 
perturbations (of opposite sign of those in the control 
experiment) at low levels (Fig. 2b), even after observations at 
four times had been assimilated.  Therefore, in this case, it is 
the evaporation of rain in the model, rather than the direct 
retrieval of temperature from the velocity observations, that is 
responsible for the low-level cold pool.  Since the radar 
horizon precluded radar scanning near the surface, we suspect 
that the shallow divergence signature that would have been 
associated with the cold pool was absent in the observations 
(Weygandt et al. 2002b).  The lowest Doppler velocity 
measurements in this case were at approximately 300-800 m 
AGL.  Since a typical range from a storm to the closest WSR-
88D would be even greater than the range (25-55 km) in this 
case, we would anticipate similar, or even greater, uncertainty 
in retrieving the magnitudes of storm-scale cold pools from 
Doppler velocity observations alone in an operational setting. 
 Although a cold pool did not develop by 16:47 CST in 
the assimilation with no rain water in the initial state, a strong, 
warm, moist updraft aloft had developed aloft by that time 
(not shown).  We produced 30-min forecasts from the 
retrieved ensemble mean state at 16:47 for both the control 
experiment (Fig. 3b) and the second experiment just described 
(Fig. 3c).  In each case, the simulated storm was in the 
approximate location of the observed storm (Fig. 3a).  The 
differences in the initializations were associated with 
differences in the sub-storm-scale structures (Figs 3b and 3c). 
 In a third experiment, we assimilated observations from 
only one radar (Cimarron) into the model.  This experiment is 
more representative of an operational retrieval and prediction, 
when dual-Doppler observations are not available.  We 
included the reflectivity based estimate of rain water in the 
first guess state.  Otherwise, we initialized the remaining 
model fields with the base state values in the sounding.  The 
assimilation of observations from only the Cimarron radar 
from 16:30 to 16:47, and the 30-min forecast from the 
retrieved ensemble mean state at 16:47, produced a significant 
storm in the correct location (Fig. 3d).   
 
4.  FUTURE WORK 
 
 The ensemble Kalman filter assimilation of Doppler 
observations of the 17 May 1981 Arcadia, Oklahoma storm 
into a numerical model was a stable procedure, and the 30-min 
forecast from the retrieved model state produced a storm in 
approximately the correct position.  However, a number of 
challenges must be addressed before an operational 
implementation of the data assimilation methodology can be 
considered.  The most significant problem appears to be the 
rapid convergence of the ensemble members.  Even though a 
relatively large ensemble (100 members) was utilized, the 
ensemble standard deviation of velocity quickly decreased to a 
magnitude less than the typical observation and forecast 
errors.  Ways for allowing for model error and/or inflating the 
magnitude of covariance in the ensemble are being considered. 
 Our experiments with the Arcadia case have just begun.  
In the near future, we are planning experiments with higher 
model resolution and with a more appropriate scheme for 
precipitation microphysics.  The results will be evaluated with 
a detailed comparison of the retrieved states to the 
observations.  We are also planning to compare the results of 

the ensemble Kalman filter data assimilation method to those 
of other methods, particularly 4DVar and single-Doppler 
retrieval. 
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                   a) with rain in initial state                                                                   b)  without rain in initial state 
 

Figure 2.  Ensemble mean of the retrieved temperature perturbation (contours and shading at intervals of 1 K) at 16:47 CST at 
0.25 km AGL.  A 60 km × 60 km portion of the domain is shown. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

a)  Results of a dual-Doppler wind synthesis (rain water                     b)  Results of a 30 min forecast initialized with the retrieved 
     mixing ratio estimated from reflectivity).                                             ensemble mean state at 16:47 CST. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

c)  As in (b), except with no rain water in the initial state.                   d)  As in (b), except for Cimarron radar data only. 
 

Figure 3.  Rain water mixing ratio (contours and shading at intervals of 1.0 g kg-1) and horizontal storm-relative winds (vectors) 
at 4.25 km AGL at 17:17 CST.  A 50 km × 50 km portion of the domain is shown. 


