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1 Introduction

Often, the assimilation of new radar and satellite
data has little or even negative impact on the model
analysis from current 3D- (and 4D-)Var systems.
These shortcomings can be traced, to a large extent,
to the over-simplified and unrealistic background
and observation error covariances that are in use.
One knows, in particular, that the background er-
ror covariance matrix provides the main vehicle by
which information from the observation increments
is propagated to those grid points and model vari-
ables that are not directly used to formulate the
observation operator. Owing to the lack of computa-
tionally feasible approaches, current 3D-Var systems
assume background error statistics that hardly ac-
count, for the geographical variability of data quality
and quantity. However, recent developments in the
use of recursive filters (Purser et al., 2002a,b) in
data assimilation seem to provide an efficient way of
accounting for the effects of covariances of spatially
varying amplitude, scale and profile shape. In this
work, we capitalize on the use of recursive filters to
test a simple model for anisotropic background error
covariances applied to the moisture field.

2 The Eta 3D-Var system

The 3D-Var problem is that of minimizing the cost-
function

J = Lx-x)" B (x—x3)
+ F O -HE) R (y - HEX) ,
(2.1)
to obtain the analysis vector x = x, from

which the next forecast is made (e.g., Daley 1991).
In (2.1), y is the vector of observations, which is
associated with the error covariance matrix R, and
H(x) is the model equivalent to y. The background
state vector and covariance matrix are x, and B,
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respectively. For lack of a better approach, R is as-
sumed to be diagonal, which amounts to neglecting
spatial correlations between the observation errors.
The background error covariance matrix, on the
other hand, is never assumed diagonal. It depends,
among other factors, on the forecast model, the
geographical location and the season of the year.

The preconditioned incremental 3D-Var adopted
in the ETA 3D-Var system at NCEP is a computa-
tionally preferred variant of the original minimiza-
tion problem (Courtier et al., 1994; Courtier, 1997).
It assumes weak nonlinearity of H(x) and uses
a variable transform to obtain a better condition
number for the matrix of the equivalent inversion
problem. It also provides the advantage of directly
operating with B rather than B~!. The system
uses a large-scale minimization algorithm that re-
quires a recipe for evaluating dx = Bf, given the
vector of forcing terms f. Due to the large size
of B(x 107 x 107), this becomes a numerically
challenging aspect of the minimization procedure.
Computational feasibility is attained by using phys-
ical insight into the background error structures: (i)
B is approximated by a number of uncorrelated uni-
variate covariance matrices via a variable transform
and the use of balance constraints; (ii) the auto-
correlations are modeled as functions of Gaussian
shape; (iii) homogeneity and isotropy are assumed
for the horizontal background error statistics. In
addition, the ETA 3D-Var system uses numerically
efficient recursive filters to approximate the convolu-
tion of spatial distributions of forcing terms with the
Gaussian kernels of quasi-isotropic auto-correlation
functions. The use of recursive filters parallels the
multiple iteration of a diffusion operator adopted
by Derber and Rosati (1989) to produced Gaussian
covariances (see also Weaver and Courtier, 2001).
However, they yield Gaussian smoothing kernels in
fewer operations than are needed with the explicit
use of the diffusion operator.



3 The anisotropic correlation
model

The recent work of Wu et al., 2002, removes the
constraint of homogeneity in the Eta 3D-Var sys-
tem and demonstrates how recursive filters are able
to efficiently account for spatially inhomogeneous
covariances. The present work lifts the isotropy
constraint, and thus complements that of Wu et al..

Following Riish¢jgaard, (1998), we use the fol-
lowing anisotropic auto-correlation function for the
moisture field:

Clxiyxa) = eap { -zt — Y — S} |

X exp {— 7(‘“21%2)2 } ,
(3.2)

where X1 = ((L'17y1,2’1) and X2 = ('Z.27y27z2)
are the position vectors of the two points being
correlated, and q; and g5 are the relative humidity of
the background fields at these points. L;(k), Ly (k)
and L, (k) are the local spatial correlation lengths
along the model x, y and z directions, respectively.
They depend on the model level k. For simplicity,
we assume that L,(k) = Ly(k) = Lp(k). L is
the function correlation length, which is assumed
constant over the model domain. The first term
on the r.h.s. of (3.2) represents the original quasi-
isotropic model, and the second term is aimed at
improving the anisotropies in the resulting auto-
correlation function. We note that this term is one
along lines of zero gradient of the background field
and less than one otherwise. Hence, it acts to stretch
the auto-correlation function along the contour lines
of the background field.

4 Results

We use the “NMC method” (Parrish and Der-
ber, 1992) to define the background error statistics
and evaluate the correlation lengths L; and L,.
L, is calculated from the error variances and their
Laplacian, while L, is estimated from the statistics
of the covariance matrix for the vertical coordinate.
For L,, we experimented with values ranging from
90% down to 15%. As expected, the stretching
of the auto-correlation function along the contour
lines of the background field was found to be more
pronounced as the value of L, decreased. For the

present work, we (arbitrarily) adopted the value
L,=20.
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Figure 1: The auto-correlation function for the
quasi-isotropic model at 0.1 contour interval (thick
contour lines) and the background relative humidity
in % (light contour lines) on the x-y surface. The
outermost contour value for the auto-correlation
function is 0.1. The full analysis grid posses 226
points in the x-direction, 184 in y-direction and 50
vertical levels.

The effect of the background error covariance
matrix on the forcing terms is approximated by
applying a recursive filter. If F is the linear operator
of the recursive filter, then we write B,,=EFFTE,
where B,; is the auto-covariance matrix for the
moisture field and E is a diagonal matrix of error
variances. We note that, under the assumption
of isotropy and Gaussian correlation model, the
filtering proceeds in the model x, y and z directions
only. In the presence of anisotropies, however, the
filtering directions become six, and are determined
by the appropriate local “aspect tensor” (Purser et
al., 2002b).



We test the response of the filter by inputting
column test vectors v comprised of zeros, except
at a selected row, where the value is one. That
row corresponds to a given test point in the model
grid, selected by visual inspection of the background
field. Of interest are points that simultaneously
lie close to regions of large and small gradient of
the background field. For one such point (x=158,
y=>57 and vertical level 25), Figs. 1, and 2 show
the filter response (w=FF7v) for the original quasi-
isotropic correlation model. The background field
is also shown, and corresponds to the Eta-analysis
for 1200 UTC 1 February 2002. The fields are
displayed on the x-y, and y-z surfaces. For clarity,
only portions of the analysis grid are displayed. As
expected, the auto-correlation function is perfectly
isotropic on the x-y surface and quasi-isotropic on
the y-z surface. The quasi-isotropy results from the
fact that Ly, # L,.
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Figure 2: As in Fig. 1, but for the y-z plane

The response of the filter for the above anisotropic
model at the same test point is shown in Figs.3
and 4. We see, on both surfaces, the desirable
anisotropy of the contour lines, which now stretch
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Figure 3: Asin Fig. 1, but for the anisotropic model

along the contours of the background field. In the
regions of sparse gradient, however, the response
resembles in shape that for the isotropic model.

5 Summary

Relaxing the homogeneous and isotropic assumption
is an important step toward improving the Eta 3D-
Var system as the observation density and quality
is location dependent. An anisotropic correlation
model has been used that captures the observational
evidence that auto-correlations are large along con-
tours of constant background field and short along
the direction of the field gradient. Results from
the use of the anisotropic model in a 12-hour as-
similation cycle followed by a short-range forecast
will be presented at the conference. A discussion
will be offered on how to “optimally” choose the
filter parameters as well as extend the correlation
model to the mass and wind analysis variables.
Some thoughts will also be presented on the use of
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Figure 4: As in Fig. 2, but for the anisotropic model

ensemble forecasting to determine the appropriate
filtering directions.

Acknowledgment

This work was partially supported by the NSF/
NOAA Joint Grants Program of the US Weather
Research Program. This research is also in response
to requirements and funding by the Federal Avia-
tion Administration (FAA). The views expressed are
those of the authors and do not necessarily represent
the official policy or position of the FAA.

References

Courtier, P., Thepaut, J.-N. and Hollingsworth, A.,
1994: A strategy for operational implementa-

tion of 4D-Var using an incremental approach.
Q. J. R. Meteorol. Soc., 120, 1367-1387.

Courtier, P., 1997: Dual formulation of four di-
mensional variational assimilation. Q. J. R.
Meteorol. Soc., 123, 2449-2461.

Daley, R. A., 1991: Atmospheric Data Assimilation.
Cambridge University Press, 471 pp.

Derber, J. C., and A. Rosati, 1989: A global ocean
data assimilation system. J. Phys. Ocean., 19,
1333-1347.

Parrish, D. F., and J. C. Derber, 1992: The National
Meteorological Center’s Spectral Statistical-
Interpolation Analysis System. Mon. Wea.
Rev., 120, 1747-1763.

Purser, R. J., W.-S. Wu, and D. F. Parrish, 2002a:
Numerical aspects of the application of recur-
sive filters to variational statistical analysis.
Part I: spatially homogeneous and isotropic
Gaussian covariances. Conditionally accepted
in the Monthly Weather Review.

Purser, R. J., W.-S. Wu, and D. F. Parrish, 2002b:
Numerical aspects of the application of re-
cursive filters to variational statistical anal-
ysis. Part II: spatially inhomogeneous and
anisotropic general covariances. Conditionally
accepted in the Monthly Weather Review.

Riish¢jgaard, L.-P., 1998: A direct way of specifying
flow-dependent error correlations for meteoro-
logical analysis systems. Tellus, 50A, 42-57.

Weaver, A., and P. Courtier, 2001: Correlation
modeling on the sphere using a generalized
diffusion equation. Quart. J. Roy. Meteor.
Soc., 127, 1815-1846.

Wu, W.-S., R. J. Purser, and D. F. Parrish, 2002:
Three-dimensional variational analysis with spa-
tially inhomogeneous covariances. Mon. Wea.
Rev., (to appear).



