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1. Introduction 

The key problem in covective-scale data assimilation 
is to infer other variables given observations of radial 
velocity and reflectivity. This problem has been 
addressed using a number of retrieval techniques (e.g., 
Shapiro et al. 1995 and references) and, more recently, 
with four-dimensional variational assimilation schemes 
(4DVar; Sun and Crook 1997). The ensemble Kalman 
filter (EnKF) is an alternative approach; it uses an 
ensemble of short-range forecasts to estimate the flow-
dependent background error covariances required in 
data assimilation. This method has attracted 
considerable recent interest in the fields of atmospheric 
and oceanic sciences and hydrology because of a 
number of appealing properties: it does not require 
adjoints of either the forecast model or observation 
operators, it integrates data assimilation and ensemble 
forecasting and thus produces estimates of forecast 
uncertainty at no extra cost, it is highly parallel, and it 
is largely independent of the forecast model (Evensen 
1994; Houtekamer and Mitchell 1998; Hamill and 
Snyder 2000; Anderson 2002). In perfect-model 
experiments using simulated observations of radial 
velocity from a supercell storm, Snyder and Zhang 
(2002) demonstrated the feasibility of the EnKF for 
convective-scale data assimilation. The present study 
seeks to explore further the potential and behavior of 
the EnKF at convective scales by considering more 
realistic initial analyses and variations in the 
availability and quality of the radar observations. A 
detailed report of this research is in Zhang et al. (2002). 

In a general sense, both the EnKF and 4DVar utilize 
the time history of the flow to gain information on 
unobserved variables. While 4DVar accomplishes this 
by fitting a solution of the forecast model to the 
observations over an interval of time, the EnKF 
summarizes the effects of previous observations and of 
past growth of forecast errors in terms of Bf, the 
forecast-error covariance matrix. Although their role 
may seem obscure, these covariances provide direct 
information on unobserved variables; if we know, say, 
the correlation in our background (or first guess) 
forecast between errors in the components of the 
velocity, then an observation of one component can be 
used to estimate the others. 

The update equation for the Kalman filter is, 
 

 xa = xf + BHT(HBHT + R)-1(y -Hxf)  (1) 

where the flow-dependent estimate of background error 
covariance B is estimated through the ensemble forecast 
(Evensen 1994):  
 

 B ≈ Ne
-1Σ(xi

f-x)(xj
f-x)T   (2) 

 

2. The control experiment 
The numerical model used is that of Sun and Crook 

(1997). The forecast model was assumed to be perfect; 
that is, the numerical model produces the forecasts and 
the reference simulation from which observations are 
taken. The environmental profile is based on the 00Z 
5/25/97 Oklahoma City sounding which was taken just 
before the development of a supercell thunderstorm. We 
have added a mean wind to the sounding so that main cell 
has small propagation speed. The forecast model employs 
a domain of 70 km by 70 km horizontally with 2-km grid 
spacing and 18 km vertically with 0.5-km resolution. The 
initial warm bubble of 2.0-K was added to the liquid 
water potential temperature field to initiates a convective 
cell. Figure 1 shows the 5-km AGL zonal winds, vertical 
velocity and total liquid water at 40, 60 and 80 min, 
respectively. The storm spits between 60 to 80 minutes 
after the warm bubble initiation; the right moving storm is 
dominant while the weaker left storm move faster relative 
to the basic flow. 

Simulated Doppler-radar wind observations are taken 
from the reference simulation. The radar is located at the 
southwest corner of the computational domain; it 
measures the radial velocity in a spherical coordinate 
system centered on the radar; the observations have a 
independent, Gaussian random errors of zero mean and 
variance of 1m/s; and the radial velocity is observed only 
where the radar reflectivity is greater than 15 dBZ. The 
observations are thus related to the reference state by 
observing the radial velocity and the dependence on the 
fall speed of rain has been neglected for simplicity.  

The assimilation experiments begin at 40 min. 
Observation sets, consisting of at all points with 
exceeding the threshold given above, are available at 45 
min and every 5 min thereafter. The only additional 
information used in the assimilation is the environmental 
sounding. Thus, each ensemble member is initialized 5 
min prior to the first observations by adding realizations 
of Gaussian to the environmental sounding. This noise is 
independent at each grid point and has variance of 3.0 m/s 
for each component of velocity and 3.0 K for the liquid-
water potential temperature. Water vapor is initialized 
using the environmental sounding at each level. No cloud 
water and rain water is allowed in the initial ensembles.  



 
 

 
 

Only 20 members were used for the ensemble 
forecasts. Each observation was assimilated 
sequentially with the radius of influence set to be 3 km. 
The posterior and prior background error covariances 
were averaged after each assimilation cycle. The 5-km 
AGL initial ensemble means of U, and Qt at 40 min are 
shown in Fig.2a-c, which contains no information of the 
initial storm shown as in Fig.1a-c. After 20 minutes (4 
cycles) of assimilation of radial velocity observations 
where dBZ>15 with EnKF, strong indication of the 

existence of the storm is presented not only in the wind 
fields (Fig.2b) which are partially observed variables), but 
also in the total water field (Fig.2e) and in the temperature 
field as well, even though the assimilated storm is less 
organized and still significantly different to the reference 
storm at this time. After another 20 min, the EnKF has 
captured completely the splitting supercell with 
comparable right structure and strength in almost every 
aspect of the storm (Fig.2d-f vs. Fig.1d-f). There is very 
small difference in the updraft of the left moving storm 



 

and also in the rain shafts between two cells. Domain-
averaged root-mean square error (RMSE) between the 
assimilated ensemble mean and the reference run of all 
six prognostic model variables after every assimilation 
cycle for 90 min is shown in Fig.3. Except for the first 
several cycles, by taking only the radial velocity 
observation when there is significant radar reflectivity 
(dBZ>15), we can see the RMSE is consistently and 
rapidly dropping for all variables. The RMSE of U and 
V winds drops below the observational error bar (1.0 
m/s) after 40 min and continuously drops to ~0.5 m/s 
after 80-90 min and appears to stabilize afterwards. 
Similar convergence of the updated/assimilated 
ensemble mean to the reference state is also true for the 
unobserved prognostic variables (Fig.3b).  

 

 
 

3. Impacts of initial estimate 
As true to all Kalman Filter-type of state estimation 

which combines the prior estimate (first guess or initial 
estimate) and the observation as well as the associated 
uncertainties, the quality of the initial estimate 
sometime can be key to the final best estimate. We first 
begin with the assimilation experiment with good initial 
guess at 40min right before the filter starts. In 
“Good0Guess”, there exists a supercell storm in the 
initial ensemble mean; each wind component of the 
initial ensemble mean differs from the reference storm 
by a random error of 3m/s and liquid water potential 
temperature by a random error of 3 K, unlike in CNTL 
where there is no prior information of the supercell 
except for the background sounding. Though the initial 
root-mean-square (rms) error is bigger than the control 
run by design (not shown), the ensemble mean will be 
quickly drawn closely to the truth run after four-
assimilation cycles. The ensemble mean is continuously 
improving to a high accuracy after 40 minutes. The 
benefit of Good0Guess over CNTL vanishes after 50-
60 min (Fig.4a). In the forecast experiments with the 

good initial estimate as in Good0Guess but without EnKF 
assimilations, the RMSE error of the pure ensemble 
forecast mean relative to the reference simulation can 
grow to a magnitude of 3m/s for velocities and 3 K for Tq 
(not shown). The EnKF is intelligently and continuously 
drawing information from the observations to keep the 
solution from diverging. 

The initial estimate of most data assimilation system 
usually comes from the previous short-term forecast; 
there is strong possibility that a storm may exist in the 
initial estimate but in the wrong location. In 
“Bad0Guess”, the initial supercell was completely 
dislocated from the reference simulation by a distance of 
10 km. For the first several assimilation cycles, the 
assimilation is struggling to develop a supercell in the 
right location and to destroy the incorrectly located initial 
storm by taking Vr observations in the vicinity of the truth 
storm location. After 20 minutes, both the newly 
assimilated storm and the “false” initial storm coexist in 
the ensemble mean; the RMSE of all prognostic variables 
is considerably larger than that in the CNTL. However, 
after 40 min of assimilation of Vr observations, the EnKF 
filter has successfully assimilated the supercell, with the 
same accuracy as those in CNTL (Fig.4b) indicates that 
the EnKF is resilient under different initial estimates. 

 

 
 

4. Impacts of Observational coverage 
In real event, the convective storms are often at a 

distance to the Radar site and thus the lowest boundary 
layer of the storm is likely missing from the Radar 
observations. Three different experiments have been 
designed.  Experiments “No2kmPBL" and “No4km1” are 
performed exactly the same as CNTL with the same 
initial estimate except that there are no observations taken 
below 2 km and 4 km, respectively. In "No4kmPBL2", a 
dense (every 4 km by 4 km) surface mesonet with U, V, 
Tq observations was added; the standard deviation of the 
surface observational error is 1m/s for U and V and 1K 



 

for Tq. As expected, the EnKF in No2kmPBL will 
initially converge toward the truth slower than that in 
the CNTL; after 4 or 5 assimilation cycles, the structure 
and characteristics in the assimilated ensemble mean 
will match closely those in the truth and the EnKF 
captures the storm in the ensemble mean after 40-min 
assimilation, though the RMSE is slightly larger than 
from the CNTL throughout the whole 90-min 
assimilation (Fig.5a). No4km1 has the difficulty to 
assimilate the storm with the right strength after 40 min 
even though the assimilated splitting supercells 
developed in the right locations. The assimilation will 
not fully recover the storm even after an hour; however, 
the assimilated ensemble mean does eventually 
approach the true state after 60-80 minutes. Significant 
improvement of the EnKF performance can be found 
when a surface mesonet of wind and temperature 
observations are added, as can be seen in No4km2. In 
this experiment, the radius of influence of each surface 
observation is set to 5 km. Even though the EnKF still 
has the difficulty assimilating the left-moving storm 
(which is the weaker one and has relatively little 
reflectivity above 4km, it captures the dominant cell 
after 40 min of assimilation. The domain averaged 
RMSE in No4km2 fall close to that of the CNTL after 
an hour while remains above or equal to the 
observational error bar for U and V throughout the 
assimilation (Fig.5b). Experiment No4km2 certainly 
suggests the addition of a hypothetical surface mesonet 
can be very beneficial in convective-scale data 
assimilation.  

Mobile Doppler radar or Doppler on wheels (DOW) 
has become an increasingly promising tool to observe 
and study the convective storms. Many of these DOWs 
observe only the lower part of the storms with higher 
accuracy. Experiment “Only4kmPBL” is designed to 
assimilate Vr observations only below 4 km, mostly in 
the boundary layer. With only the lower-layer 
observations, even though the filter begins to develop 
storms in the ensemble mean after 20 minutes similar to 
those in the CNTL at 5-km AGL, the domain-averaged 
RMSE of all prognostic variables is significantly larger; 
most of the difference exists in the upper troposphere 
where no observations are taken. After 40 min, the filter 
appears to have captured the splitting storms in the right 
location and strength though the zonal wind field has 
the most difficulty from both the 5-km AGL fields and 
the RMSE (not shown), which improves greatly after 
60 min.  

 

5. Concluding remarks 
The ensemble Kalman filter (EnKF) uses short-range 

ensemble forecasts to estimate the flow-dependent 
background error covariances required in data 
assimilation. Here we further demonstrated the 
feasibility of the EnKF for convective-scale data 

assimilation in consideration of impacts of initial analyses 
and observations. EnKF using radial-velocity 
observations and 20 ensemble members can be successful 
in most realistic observational scenarios for supercell 
thunderstorms, although because of our assumption of a 
perfect forecast model these are undoubtedly upper 
bounds on the performance to be expected with real 
observations and an imperfect model. Even though the 
filter converges toward the truth simulation faster from a 
better initial estimate, an accurate estimate of the storm 
can be achieved within an hour even the initial storm was 
totally misplaced. Similarly, radial-velocity observations 
below 2km are certainly beneficial but in their absence 
the assimilation scheme can still achieve a comparably 
accurate estimate of the state of the storm given a slightly 
longer assimilation period. The addition of a dense 
network of wind and temperature observations at the 
surface, the EnKF can again provide an accurate estimate 
of the storm with no radial velocity observation below 
4km. It can also successfully assimilate the storm in the 
case of radar observations only below 4 km. 
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