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1. INTRODUCTION

A complete atmospheric state estimate is
required for numerical weather prediction (NWP).
A prior state estimate (background) is usually
available and can be improved by using newly
obtained observations of the atmosphere. The four
dimensional variational data assimilation (4D-Var)
and the ensemble Kalman filter techniques are two
family of methods for combining the background
and the observations in an analysis suitable for
NWP.

The ability of 4D-Var has been proven in
some NWP centers. For radar data assimilation,
the 4D-Var was also used successfully (Sun and
Crook, 1997). Recently, ensemble Kalman filter
techniques have been developed and tested on
simple models (for examples, see Whitaker and
Hamill, 2002). The application of ensemble Kalman
filtering with more realistic atmospheric models is
yet to be fully explored. In this paper, the ensemble
Kalman filter is applied to the assimilation of radar
data in a cloud-resolving model and compared with
the results of 4D-Var.

2. ASSIMILATION ALGORITHMS

In the theoretical context of perfect model
and linear dynamics, the 4D-Var and the Kalman
filter give identical results at the end of the
assimilation (Lorenc, 1986). Because of model
nonlinearity, sampling error, and computational
procedure, results from 4D-Var and the ensemble
Kalman filter are expected to differ.

2.1 The 4D-Var algorithm

The 4D-Var analysis x2 is obtained through the
minimization of a cost function J that measures
the misfit between the model trajectory Hx and the
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observations y over a time window:

J = (x=x)TP" " (x=x)+(Hx—y) TR (Hx—y), (1)

where H is the generalized observational operator
and R is the observational-error covariance matrix.
The minimization of the cost function is achieved
by adjusting the initial condition x of the model
at the beginning of the assimilation window while
remaining close to the background state xf, which
is usually a forecast. This closeness is specified

by the forecast-error covariance matrix P'. The
minimization itself is performed by integrating the
forecast model through the end of the assimilation
window to evaluate the cost function. Then the
adjoint model is integrated backward in time to give
the variation of the cost function with respect to the
initial condition. This information is used iteratively
in a descent algorithm until a satisfactory solution
is found. The solution at the end of the assimilation
window is used as background and first guess for
the next assimilation cycle.

2.2 An ensemble Kalman filter

Unlike the 4D-Var algorithm, the Kalman filter
assimilates the observations sequentially. First, the
model state x' and the forecast-error covariance
matrix P" are propagated forward in time until the
next observational time. Second, a new state
estimate x? is provided by minimizing J, which is
now a 3D-Var problem for the Kalman filter since
only the data at that time are considered. Third,
the forecast-error covariances are reduced by the
assimilation of the observations. This procedure is
repeated until all data in the assimilation window
are processed.

Unfortunately, the full representation and evo-
lution of the forecast-error covariance matrix P’
required by the Kalman filter are not feasible at
present for NWP model. The ensemble Kalman
filter has been developed to circumvent this prob-
lem (Evensen, 1994). The forecast-error covari-
ance matrix P’ is represented with an ensemble of
equally possible states {x!,i=1,...,n.} by:

pr= L1 xix", @)
ne—1



where X' is the matrix whose columns are the
deviations from the ensemble mean of x! and is

also a square root (to a constant) of P'. By using
a limited number of ensemble members n., the
method can be as tractable as 4D-Var.

An ensemble square-root filter (EnSRF), which
does not require perturbed observations (Whitaker
and Hamill, 2002), is used in this study. When
observational-error correlations can be neglected
(i.,e. R can be reduced to a diagonal matrix), the
observations can be assimilated one at a time. This
greatly simplifies the computation in the analysis
step in the EnSRF and is exploited in this work.

The sampling error associated with the limited
ensemble size means that the small correlations
between widely separated state variables are
difficult to estimate (Hamill et al., 2001). For this
reason, each observation is allowed to influence
only state variables located within a certain cut-off
radius of the observation.

3. METHODOLOGY

The cloud model of Sun and Crook (1997) is
used in this study to generate a control simulation
of a supercell storm as well as the assimilation
model for 4D-Var and the EnSRFE Thus, the
two methods are compared here in the context
of perfect model. The prognostic variables are
the velocity components (u, v, w), the liquid water
potential temperature (6;), the rain water mixing
ratio (¢g.), and the total water mixing ratio (g;). The
supercell stormis produced by initializing the model
with the 00Z 5/25/97 Oklahoma City sounding on
which a warm bubble is superimposed. The warm
bubble is centered at 1.25 km altitude, is 16 km
wide and 2 km deep, and is 1 degree warmer than
the environment. The model has 2 km resolution in
the horizontal and 500 m between vertical levels.
The domain is 140x140x17.5 km® and is large
enough as to mitigate the effect of the boundaries
on the simulated storm. The model equations are
integrated with a time step of 5 s.

3.1 Simulated data

The radial velocity observations are simulated
at each 5 minutes from the control simulation where
the rain water mixing ratio ¢, exceeds 0.13 g kg1,
or approximately 12 dBZ, as seen by a single radar
located at the South-West corner of the domain. A
1 m s~! random Gaussian noise is added to the
radial velocities before the assimilation.

In the 4D-Var experiments, ¢, is also assimi-
lated at those points where it exceeds 0.13 g kg 1.
Assimilation of ¢, does not improve the EnSRF
analyses at present and so the results shown for

the EnSRF are based only on assimilation of radial
velocity.

3.2 Background and forecast-error covariance

The true rain water mixing ratio is used in
the background and the liquid water potential
temperature 6, is modified accordingly following the
definition

L
0! =0 (1 - cp;—a (QC + QT)> - (3)
The cloud water mixing ratio ¢. is set to zero. The
remaining of the model variables are set to the
values of the sounding.

The forecast-error correlations are neglected
in P" of the 4D-Var cost function. The forecast-
error covariance matrix is thus modeled in 4D-Var
as diag (c?), that is, as a diagonal matrix of the
error variances o? for each state variable. Forecast-
error correlations are also ignored in the initial
EnSRF ensemble; each member is initialized with
the environmental sounding plus Gaussian noise
with zero mean and covariance diag (¢?). Table 1
shows the corresponding standard deviations for
both 4D-Var and the initial EnSRF ensemble. Note
that all the negative values produced during the
addition of the noise are changed to zero for ¢, and

qt-

Table 1. Forecast-error standard deviations.
Ou,v,w (m Sil) ar (K) O¢r,qs (g kgil)

4D-Var 1.0 1.0 0.1
EnSRF 3.0 3.0 0.1

A 100-member EnSRF is initialized at t=35
minutes into the control simulation. The cut-off
radius limits the correlation length to 6 km. The
4D-Var uses a 10-minute assimilation window. The
data are assimilated from t=35 minutes, when the
precipitating cell is organized, and the assimilation
is stopped after 65 minutes. From there 2-hour
forecasts are issued from 4D-Var and EnSRF
analyses.

4. RESULTS

Figure 1 shows the rain water mixing ratio at
the lowest model level (250 m) with the horizontal
wind vectors at 65 minutes (the end of the
analysis cycles) in the control simulation, and the
corresponding 4D-Var and EnSRF analyses. Both
4D-Var and EnSRF analyses kept track of the
single cell that the warm bubble produced but it is
better represented in the 4D-Var analysis. Figure
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Figure 1. Rain water mixing ratio at 250 m and 65 minutes into

the simulation (end of analysis cycles). Contour interval is 0.5

g kg~ starting at 0.13 g kg—1.
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2 depicts the same fields after 1 hour into the
forecast. Both forecasts have correctly produced
the splitting of the cell in two but the intensity
of precipitation in the forecast from the EnSRF
analysis remains too weak and the 4D-Var analysis
results in a better forecast.

Figure 3a shows the r.m.s errors in the 3D
domain of the three wind components
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Figure 3. The rm.s. error of the model variables during the
assimilation from 35 to 65 minutes and the 2-hour forecast for
the ensemble mean of the EnSRF (full line) and the 4D-Var
analysis (dashed line): a) the three wind components and b) the
liquid water potential temperature §;, the rain water ¢, and the
total water contents g:.

during the assimilation and the forecast from
the 4D-Var and EnSRF analyses. Figure 3b is
for the r.m.s errors of the liquid water potential

temperature, and rain water and total water mixing
ratios. The 4D-Var is continuously producing better
results for this case. We emphasize, however, that
the r.m.s errors of the 4D-Var analyses generally
increase at later times while those of the EnSRF
tend to decrease after the third analysis cycle (at
50 minutes). By 90 minutes, the two methods give
similar r.m.s errors (not shown).

5. FUTURE WORK

There are three changes that could improve
the performance of the EnSRF. First, the sample
covariances should be localized with a compactly
supported correlation function (Hamill et al. 2001)
rather than simply set to zero beyond a given
radius. Second, instead of using uncorrelated
noise over the entire domain to initialize the EnSRF,
spatially correlated noise localized where there are
radar echoes may be more suitable. This should
reduce the standard deviations required in the initial
ensemble and enable a better comparison with
4D-Var. Third, radar reflectivity observations are
undoubtedly an important source of information
and should be assimilated, although effective
techniques for this remain to be developed for the
EnSRF

We also plan to examine the sensitivity of
the methods to the presence of model errors and
correlated observational errors. The EnSRF and
4D-Var methods are also applied on a real data
case at this conference in presentations 13.9 and
4B.1, respectively.
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