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1. Introduction 
 
 The Damaging Downburst Prediction and 
Detection Algorithm (DDPDA) detects and predicts 
the onset of damaging outflows from storm cells that 
form in an environment of high CAPE and weak 
environmental wind shear.  Earlier work (Smith et al 
1998) presented an analysis based on a data set that 
was limited in quantity of events and quality of storm 
cell identifications that were used as input to the 
DDPDA.  The current work consists of several steps 
to expand on this previous effort.  First, the number of 
downburst days and non-event days used to develop 
downburst prediction equations are significantly 
increased.  The data set is filtered to remove 
erroneous storm cell information.  Finally, prediction 
equations are developed and skill scores calculated. 
 
2. Dataset 
 

The DDPDA’s predictive capabilities are 
based on adequate vertical sampling of the storm by 
the WSR-88D.  The DDPDA uses that information to 
predict the occurrence of strong outflows at the 
surface with a 1-15 minute lead-time.  The DDPDA 
development and testing data set consists of 64 days, 
including 91 severe downburst events and 1247 null 
events.   These cases are broken into two range 
categories that span 20-45 km and 45-80 km from 
each radar (Table 1).  No events within 20 km of a 
WSR-88D are included, as the radar did not sample 
the upper levels of most storm cells at those ranges.   
 
 Several parameters are stored for the 
lifetime of each cell in the database  (Table 2).  Each 
parameter measures some aspect of the cell that may 
be used for predicting downburst events.  Each 
parameter is an integrated quantity based on one 5-6 
minute WSR-88D volume scan.  Parameters that 
measure the rate of change of other variables are 
excluded from this study, as the DDPDA depends the 
WSR-188D Storm Cell Identification and Tracking 
algorithm, which is frequently fraught with storm 
tracking errors.  Previous studies have shown that 
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3. Analysis 
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sample size in the developmental data set in the 45-
80 km range band.  Although the HSS at 45-80 km is 
about half that of the 20-45 km range band, the 95% 
confidence internal for the median is greater than 
zero, indicating that the prediction equations have 
skill.  Additionally, the median lead time (figure 2) for 
the 20-45 km range is 5.5 minutes from the downburst 
prediction to the initial onset of outflow at the surface, 
while the median lead time for the 45-80 km range 
band is 0 minutes.   
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Figure 1:  Distribution of validation data set skill scores for the
20-45 km range band (“45 km”) and the 45-80 km (“80 km”)
range band.  Each box-and-whisker chart shows the median
value (white dot), 95% confidence interval of the median (dark
gray box), inter-quartile range (IQR; light gray box), 1.5 x IQR
(whiskers), and individual outliers (black dots) for one hundred
downburst prediction equations. 

Variable 
name 

 
Type 

 
Description 

VIL R Cell-based Vertically Integrated Liquid
MASSHT R Height of the center of mass 
VOL R Cell volume 
ASP R Core aspect ratio (ratio of cell depth  

to cell width) 
SHI R Severe Hail Index (Witt et al 1998) 
MAXDBZ R Maximum reflectivity 
DBZHT R Height of the maximum reflectivity 
DBZ_7KM R Maximum reflectivity above 7 km  

mean sea level (MSL) 
ZTHTE R/E Maximum reflectivity near the height  

of the minimum environmental θe  
ZATHTE R/E Maximum reflectivity above the  

height of the min. env. θe  
CNVMELT V/E Maximum LS convergence near the  

height of the env. 0 C isotherm  
CTHTE V/E Maximum LS conv. near the height  

of the minimum env. θe  
C16 V Maximum LS conv. in the 1-6 km 

MSL layer  
DVMELT V/E Maximum convergent ∆V near the  

height of the env. 0 C isotherm  
DVTHTE V/E Maximum convergent ∆V near the  

height of the min. env. θe  
DV16 V Maximum convergent ∆V in the  

1-6 km MSL layer  
DPTHC V Depth of LS convergence exceeding  

0.004 s-1  
DPTHDV V Depth of convergent ∆V exceeding  

10 ms-1  
MAXR17 V Maximum positive rotation in the  

1-7 km MSL layer  
MINR17 V Minimum negative rotation in the  

1-7 km MSL layer  
CMEAN16 V Mean LS conv. in the 1-6 km  

MSL layer  
DV3 V Maximum conv. ∆V in the 1-6 km MSL

 layer, min/max can be separated by  
up to 3 radials 

CONV006 V Maximum cross-sectional area of  
cell in the 1-6km MSL layer that  
exceeds 0.06 s-1 

CONV004 V Same as CONV006, for  0.04 s-1 
CONV002 V Same as CONV006, for  0.02 s-1 
CONV001 V Same as CONV006, for 0.01 s-1 

Table 2:  The integrated parameters imported or calculated 
by the DDPDA.  The variable name is listed, followed by 
the type of data the parameter is derived from (R is 
reflectivity, V is radial velocity, and E is environmental) and 
a description of how it is calculated.   
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Figure 2:  The distribution of the average lead times (minutes) 
from the issuance of a DDPDA downburst prediction to the initial 
onset of damaging outflow. 

Figures 3 and 4 show the distributions of 
discriminant weights for all the variables, based on 
one hundred prediction equations, as well as the 
frequency with which each parameter appears in the 
equations.  Discriminant analysis results exclude the 
variables that do not contribute to the discrimination 
between cells that produce downbursts and cells that 
do not (Statsoft 1995).  Therefore, when the dataset is 
re-sampled many times into new training and 
validation data sets, the most important parameters 
should appear in most of the corresponding prediction 



equations.  Additionally, the mean discriminant weight 
(or standardized canonical coefficient) for each 
variable is given.  This coefficient describes the 
relative contribution of each variable to the ability to 
discriminate between groups.  The larger the 
standardized coefficient, the greater the contribution 
of that variable is to the discrimination between 
downburst-producing storms and non-downburst 
storms (Statsoft 1995). 
 
4. Discussion 
 

Based on these weightings, the variables 
that appear to be most important to the timely 
prediction of downbursts in the 20 to 45 km range 
band include mostly reflectivity-based parameters:  
VIL, Severe Hail Index (SHI), height of the center of 
mass (MASSHT), and core aspect ratio (ASP).  The 
most important velocity-based variable is the cross-
sectional area coverage of radial convergence 
exceeding 0.006 s-1 (CONV006).  Several 
environmental parameters were also included in at 
least 50% of the equations, but do not have a 
substantial impact in short-term predictions.  This 
suggests that parameters that detect large, elongating 
reflectivity cores aloft are the most useful in 
downburst prediction at this range.  It also suggests 
that the contribution of CONV006 as a convergence 
detection parameter strongly outweighs the 
contributions of most of the other radial velocity-based 

parameters, which are clustered with the other 
seldom-used variables near the far right of the graph. 
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Figure 3:  The distribution of discriminant weights of each parameter for the 20-45 km range band and the number
of DDPDA prediction equations (out of one hundred) in which they appeared.  The parameters are described in
table 2. 

 
The variables most important in the 45 to 80 

km range band are the reflectivity-based SHI, VIL, 
and ASP parameters.  Other variables that occurred 
frequently, but were not weighted as heavily, include 
the cross-sectional area coverage of radial 
convergence exceeding 0.001 s-1 (CONV001), the 
maximum rotational shear between 1 and 7 km MSL 
(MAXR17), the depth of convergence exceeding 
0.004 s-1 (DPTHC), and storm cell volume (VOL).  
The high weightings of the reflectivity-based 
parameters suggest that most storms that produced 
strong outflows likely included ice processes aloft.  
The next three most-used parameters are all radial 
velocity-based variables that measure different 
aspects of the velocity field (convergence strength 
and depth, and rotation).  However, the weightings of 
these variables in the discriminant equations are 
relatively low.  The poor sampling of the velocity field 
at long ranges causes the radial convergence field to 
be weak and noisy; therefore, reflectivity-based 
indicators have the greatest contribution to 
discrimination between event types at these ranges. 
 
 The median HSS for each range band is a 
good estimator of the optimal expected long-term 
performance of each prediction equation.  Therefore, 
the equations that give the median scores at each of 



the two range bands were chosen for inclusion in the 
DDPDA.  These median-performance equations are 
chosen rather than the equations that produced the 
best skill scores, because the “best” HSS scores are 
an artifact of the sampling of the training and 
validation data sets. 
 
5. Acknowledgements 
 
This research is in response to requirements and 
funding by the Federal Aviation Administration (FAA).  
The views expressed are those of the authors and do 
not necessarily represent the official policy or position 
of the FAA.  
 
6. References 
 
Eilts, M.D., J.T. Johnson, E.D. Mitchell, R. J. Lynn, P. 

Spencer, S. Cobb, and T.M. Smith, 1996:  
Damaging Downburst Prediction and Detection 
Algorithm for the WSR-88D.  Preprints, 18th Conf. 
On Severe Local Storms, San Francisco, CA, 
Amer. Met. Soc., 541-545. 

 
Roberts, R.D. and J.W. Wilson, 1989: A proposed 

microburst nowcasting procedure using single-
Doppler radar.  J. Appl. Meteor., 28, 285-303. 

 
Statsoft, 1995:  Statistica.  Statsoft, Inc., Tulsa.  5494 

pp. 
 

Smith. T. M., K. L. Elmore, and K. A. Scharfenberg, 
1998: WSR-88D characteristics relevant to 
severe downbursts.  Preprints, 19th Conf. On 
Severe Local Storms, Minneapolis, MN, Amer. 
Met. Soc., 736-739. 

ASP
SHI

VIL

CONV00
1

MAXR17

DPTHC
VOL

MASSHT
DV16

DPTHDV

DVTHTE

DVMELT

CONV00
6

MAZDBZ

DBZHT

CMEAN16

CONV00
4

ZATHTE

ZTHTE

DBZ_7
KM

CNVMELT

CTHTE
C16

_

MIN
R17

CONV00
2

DV3

Parameter

0.0

0.2

0.4

0.6

0.8

1.0

D
is

cr
im

in
an

t W
ei

gh
t

Maximum
Upper Quartile
Median
Lower Quartile
Minimum
Number of Cases

0

10

20

30

40

50

60

70

80

90

100

N
um

ber of C
ases

DDPDA Resampled Discriminant Analysis Results
45-80 km Range

 
Figure 4:  Same as figure 2, except for the 45-80 km range band. 

 
Wilks, D. S., 1995: Statistical Methods in the 

Atmospheric Sciences.  Academic Press, San 
Diego.  465 pp. 

 
Witt, A., M.D. Eilts, G.J. Stumpf, J.T. Johnson, E.D. 

Mitchell, and K.W. Thomas, 1998: An Enhanced 
Hail Detection Algorithm for the WSR-88D. . 
Wea. Forecasting, 13, 286-303. 

 


	P4.5

