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and a Possible Remedy
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1. Introduction

Forecast verification is the process of
measuring a forecast against observations of
the future conditions. The verification “score”
can take many forms: MAE, Brier score
(Brier, 1950), percent “correct”, etc. But as
soon as different forecast methods come to
exist, the issue of comparison among the
scores arises. For example, is method A
better than some simple control, or is method
B? The simple way is to compare the scores
of A and B and choose the better score.
However, the way in which the comparison is
made must be as carefully constructed as the
score itself. It is one thing to forecast
accurately, and another to compete against a
rival method. When competition is seen as
the more important issue, forecast accuracy
can suffer. This is especially true when the
comparison method is biased or addresses
issues not considered in the original
verification, such as lead-time. Some of the
biases are quite subtle, and unintentional.
This article shows what can happen when
Brier scores, or the related rms scores, are
compared among rival methods.

2. Bias in Brier-Score Comparison
Brier score is usually applied to forecasts of

Probability of Precipitation (PoP). Forecast
PoP (f) can take on any value from zero to
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100, but observed PoP (0) can only be zero or
100. In NWS practice, Brier score (BS) is
usually computed as:

5S=(f-0)" /100 (1)

The goal is to minimize BS, which, in turn,
implies forecasting a PoP as close to zero or
100 as possible. But since it is not completely
known in advance if it will rain or not,
forecasting intermediate PoPs has meaning.
The point of squaring differences in the Brier
formulais to emphasize the larger differences,
and especially to discourage large busts when
forecasting PoP.

Now consider two rival PoP forecasters. One
may be human and the other may be MOS, or
amodel, or another human. The objectivity of
MOS makes it good as a “control” rival when
considering the “value” of the human forecast.
In some sense, the “value” of the human
forecast can be equated to how effectively it
departs correctly from the MOS PoP. MOS
always concedes an error if it forecasts any
number other than zero or 100. Can humans
do better? When MOS forecasts a PoP of 50
it concedes 25 Brier points whether it rains or
not. Suppose the human forecasts a PoP of
zero. If it doesn’t rain, the human Brier score
is zero, or 25 better than MOS. If it does
rain, the human Brier score is 100, or 75
worse than MOS. Note how the penalty for a
50 PoP wrong departure is much larger than
the reward for a 50 PoP correct departure.

Under these circumstances the human



forecaster would be foolish to forecast either
zero or 100 PoP, even if he strongly felt it was
the right (most accurate) forecast. By
weighting the penalty more heavily than the
reward, the comparison method tends to make
the human hedge his own forecast.

Now consider two forecasters, A and B,
competing against MOS PoP forecasts. In one
case, MOS forecasts 30 PoP and forecaster A
forecasts 10 PoP. It doesn’t rain, so MOS gets
a Brier score of 9, and forecaster A gets a
Brier score of 1. Forecaster A is 8 points
better than MOS. In a second case MOS
makes another forecast (possibly for the very
same event but using a newer model run, for
example). MOS now forecasts 50 PoP and
forecaster B forecasts 40 PoP. It doesn’t rain,
so MOS gets a Brier score of 25, and
forecaster B gets a Brier score of 16.
Forecaster B is 9 points better than MOS.
Since it didn’t rain, forecaster B’s 40 PoP
verifies worse than forecaster A’s 10 PoP,
and their respective Brier scores of 16 and 1
correctly reflect this. However, if we compare
improvements vs MOS, we see that forecaster
B (+9 vs MOS) is better than forecaster A (+8
vs MOS), even though forecaster B deviates
less from MOS than forecaster A does. This
is almost certainly not the intended message.

Over many attempts, both forecasters will
learn to hedge somewhere between MOS and
their true beliefs, developing their cost-benefit
calculation skills instead of their forecasting
skills. How can the comparison scheme be
modified to correct this problem?

3. A Remedy

Consider again the previous example, but
make the comparison differently. = When
MOS forecasts a 30 PoP it offers forecaster A
an opportunity to score 9 Brier points better if
rain doesn’t occur. But forecaster A doesn’t

“know” this in advance. Forecaster A should
only concern himself with the forecast, not the
consequences of the comparison method. He
chooses 10 PoP and gets a 4 point
improvement over MOS (20 PoP difference
squared).

When MOS forecasts 50 PoP it offers
forecaster B an opportunity of 25 points
whether it rains or not. Forecaster B chooses
40 PoP, only 1 point better than MOS (10 PoP
difference squared), although 25 are available.

Forecaster A therefore makes the better
forecast than forecaster B. Forecaster A not
only verifies better than forecaster B (10 PoP
vs 40 PoP), but also departs further from MOS
than forecaster B and in the right sense.

What happens here is that departures from
MOS, correct or incorrect, are weighted
equally. The size of the penalty or reward is
still squared, just as the errors themselves are
squared in the Brier calculations. Squaring
emphasizes the big departures, both good and
bad. But the disproportionate penalty is
removed, allowing the forecaster to
concentrate more on the forecast and less on
the comparison method.

Finally, squaring departures from MOS brings
out the forecaster’s confidence in his
decisions. These cases are the ones where the
human can add the most value to automated
forecasts. Squaring also discourages the
practice of accumulating points by shading
MOS slightly one way or the other, which
over many forecasts can obscure the real value
of the fewer but significant big departures.
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