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1. Introduction. 
 

*The parameter retrieval method (Marchuk 1981; Louis 
1979; Backus and Gilbert 1970; Qiu and Chou 1988) can 
be applied to determine the optimal values of certain pa-
rameters in sophisticated numerical models. The method 
can be utilized to determine the values of interrelated pa-
rameters in a complex numerical model, thus making the 
parameter calibration more objective.  

In this study, we apply a parameter retrieval method to 
a land surface model, the SHEELS (Smith et al. 1993), 
inside the ARPS (Xue et al. 1995; 2000) framework. The 
Oklahoma Atmospheric Surface-layer Instrumentation Sys-
tem (OASIS) soil and surface measurements (Brotzge 
2000) are used as the ground truth for the parameter re-
trieval and validation. 

The soil textural description at the Norman, Oklahoma 
OASIS site is given in Table 1. Typically, parameters in 
land surface models are specified using tables based on 
the soil categories . For example, the saturated hydraulic 
conductivity to be retrieved in this study can be specified 
according to Table 1 (in the last column) for SHEELS after 
Dickinson et al. (1993). The alternative is to use parameter 
retrieval methods and measurement data to determine the 
‘optimal’ param eter values that produce forecasts with best 
fit to data. The second approach is the focus of this work. 
 

2. The Land-surface model: SHEELS 
 

The SHEELS model describes the physics of the sur-
face and subsurface (Smith et al. 1993) of the soil layers.  It 
evolved from the BATS (Dickinson et al. 1986) model and 
has enhanced soil thermal and hydrological features. The 
model uses only one canopy layer and allows fractional 
coverage of the ground by vegetation. The partially vege-
tated surface is divided into four domains centered on the 
in-canopy air. Instead of using a nested soil layer ap-
proach, three adjacent zones are used to describe the sub-
surface, each of which is treated differently for moisture 
and root distribution. SHEELS also allows division of the 
soil zone into sub-layers. Although the soil properties as 
input are usually specified only for each of the three soil 
zones (limited by data availability), the water fluxes and 
heat conductance are diagnosed for the sub-layers, i.e., 
there is a vertical-moisture-content-gradient driven water 
exchange, a temperature-gradient driven heat exchange 
between the adjacent layers, and a soil-water-content-
dependent plant transpiration.  SHEELS as used in this 
study is a 1-D model (there is no lateral moisture and heat 
transfer) that differentiates 11 soil categories (the 11 tex-
tural classes in United States Department of Agriculture 
textural triangle) and 6 land cover classes. 
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3. The Parameter retrieval method 
 

The parameter retrieval method we use is  based on 
the small perturbation theory described in Marchuk (1981). 
With this method, a set of linear system of equations  is 
formed, with the solution to be found being the parameter 
perturbations and the coefficients of the equations being 
the gradients of a cost function with respect to the parame-
ters. When more data than the number of param eters are 
used, the equation sys tem is over-determined and the sys-
tem can be solved using a general linear inversion method 
(Backus and Gilbert 1970; Qiu and Chou 1988). 

Although the above optimization problem would best 
be solved by using minimization techniques based on 
model ajoint (LeDimet and Talagrand 1986), application of 
the method does require the adjoint code of the forward 
model, and the coding of the adjoint for a model like 
SHEELS is not straightforward due to the use of discon-
tinuous functions and complex logics in the formulation. 
With the current procedure, the gradients of the cost func-
tion with respect to the parameters are obtained by running 
the forward model multiple times, each time using a differ-
ent parameter value perturbed within its possible range. 
With the gradients, i.e., the coefficients of the linear system 
of equation, being known, the equations are solved to ob-
tain corrections to the parameters that give a better match 
between the model prediction and the observations  when 
measured in terms of the cost function. Iterations are us u-
ally performed to improve the accuracy of retrieval.  

In this study, the saturated hydraulic conductivity, Ksat, 
the minimum stomatal resistance, Rsmin, and the fractional 
soil moisture at which permanent wilting occurs, fwilt, are 
chosen as the target parameters for retrieval. They play 
direct roles in determining the soil hydrological processes 
that will finally affect the surface water and energy fluxes. 
Their values in field conditions are generally uncertain and 
their canonical values are usually obtained under labora-
tory conditions.  

The three parameters  to be retrieved are functions of 
soil properties only. Ideally, the optimization process should 
be carried out with observational values over time periods 
containing a broad range of meteorological and biophysical 
conditions. To simplify the problem, we selected periods 
with fine weather conditions  only. OASIS provides routine 
half-hourly measurements of soil moisture contents at four 
different depths, it is therefore not hard to have enough 
observations to make the inversion problem over-
determined hence solvable. 

In general, parameters of very different sensitivity 
should not be retrieved at the same time. This is true for 
Ksat, and Rsmin and fwilt. We therefore retrieve first the value 
of Ksat for all the different vertical sub-layers, then fix it at its 
optimal value and repeat the procedure to retrieve Rsmin 



and fwilt together. Again, iterations can be performed to re-
fine the retrievals. 

To start the procedure, the initial guess values for the 
target parameters need to be specified and the closer are 
they to the true values the better. Published categorical 
values from previous studies are used here. The setting of 
the range of param eters should bracket the initial guess 
and be wide enough to cover plausible limits of their varia-
tions. In our procedure, the model-derived soil volumetric 
water contents are compared with the corresponding 
OASIS measurements. An optimal solution was chosen on 
the basis of root mean square (rms) difference. We choose 
to terminate the iteration procedure when the decrease of 
rms error is three orders of magnitude smaller than the 
initial value based on first guess parameter values.  
 

4. DATA: OASIS measurements 
The OASIS data set at Norman super site used here 

was provided by J. Brotzge, and has been used for model 
calibration purposes (Brotzge and Weber 2002). The Nor-
man site is flat and the vegetation is classified as scrub and 
its immediate surroundings can be considered uniform 
within a range of several kilometers  and has  an elevation of 
360 m. 

The available measurements that can be used to force 
to the land-surface model include surface temperature, 
water vapor mixing ratio, wind speed and direction, surface 
pressure (mb), and precipitation rate (m s -1). At the OASIS 
site, an infrared sensor records surface skin temperature 
and data are collected at 5 min intervals . The soil moisture 
and soil temperature are measured using the 229-L sen-
sors  every half an hour at 0.05 m, 0.25 m, 0.60 m and 0.75 
m from the surface downward. Details of the measure-
ments, including theory, sensor calibration and data ma-
nipulation are described in Basara (2001). 

Like the soil data, vegetation data are also recorded 
every half an hour. The vegetation parameters include 
vegetation type, leaf area index (LAI), vegetation coverage, 
and NDVI index.   

OASIS measurements of soil moisture contents from 
May 20 through May 24, 2000 are used in our parameter 
retrieval scheme to determine the optimal parameters. This 
period represents synoptically-quiescent spring days char-
acterized by warm temperatures (maximum temperature of 
28° C), a moderately moist soil and vigorous vegetation 
growth (NDVI = 0.61). From the Norman OASIS site, a 
vegetation cover of 75% was estimated for the period. The 
retrieved values of parameters are then applied to the pe-
riod of May 11-15, 2000 to validate the retrievals . The 
weather condition of this period is similar to that of the first 
period. To better match OASIS data which contain meas-
urements of soil temperature and soil moisture for soil 
depths of 0.05, 0.25, 0.6 and 0.75 m, SHEELS is used as a 
5-layer model. The first four layers are centered at the 
measurement depths and the bottom layer is included to 
facilitate the implementation of zero-gradient boundary 
condition. 
 
5. Results and analysis 

 OASIS-measured soil moistures at 0.05, 0.25, 0.6 and 
0.75 m show that before the rainfall at 06UTC, May 25th, 
there is a steady drying down trend for the deep soil mois-
tures (all except that measured at 0.05 m) (Fig.1).  The soil 
moisture at the surface layer (0.05 m) has an apparent 

daily cycle. However, counter-intuitively, soil water content 
increases  during daytime (Fig. 1.). Zoom-in of the figure 
reviews that the phase of soil moisture variation at 0.05 m 
depth is opposite to that of 0.25 m, suggesting water redis-
tribution among this slab of soil perhaps due to the activity 
of shrubs (Brotzge, personal communication). 

Because the process responsible to the kind of diurnal 
cycle in the moisture in the upper most soil layer is not 
modeled in SHEELS, and to remove other noises in the 
observational data, we compare daily averaged values of 
model against the observed ones  during the period of May 
20 to May 24, 2000 in our retrieval experiment. 

The retrieved values of the parameters are given in 
Table 2.  In Fig. 2, we can see that the daily mean soil 
moisture contents at differe nt depths  for the May 11- 15, 
2000 period are much better predicted when using the re-
trieved values than using the original category-based val-
ues. 

The retrieved parameters are generally not far from the 
categorical values. For example, starting from the first 
guess values of fwilt=0.18 and Rsmin=150 s m -1 derived from 
Dickinson et al. (1993), we obtain the retrieved values of 
0.19 and 200 s m-1, respectively. The vegetation type at 
Norman is not exactly one category in SHEELS’ classifica-
tions. Such a situation of mixed types is even more difficult 
for the category-based approach. 

In summary, our preliminary results show that a sim-
ple, non-adjoint-based parameter retrieval procedure can 
be quite successful in retrieving important parameters in a 
soil-vegetation model, and the model prediction can be 
significantly improved when the optimal retrieved param e-
ter values are used. 
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Table 1. Soil characteristics of Norman OASIS super site 

 Texture Class % Sand % Silt % Clay % Gravel 
Saturated hydraulic 
conductivity (m s -1) 

5 cm depth Silt loam 19.06 56.62 24.32  8.9 ×  10-6 

25 cm depth Silty clay 14.17 43.17 42.66  1.1 ×  10-6 

60 cm depth Silty clay 18.49 39.66 41.85 1.91 1.1 ×  10-6 

75 cm depth Silty clay 16.45 41.32 42.23 2.60 1.1 ×  10-6 

 
Table 2. Retrieved vs. classification-specified saturated hydraulic conductivity (×10-6 m s-1), min imum 
stomatal resistance and wilting point. At the time of convergence, the mean square error rms=1.48×10-3 

for soil moisture contents at all four levels. 
 Saturated hydraulic conductivity(×10-6 m s -1) Rsmin fwilt 

 5 cm 25 cm 60 cm 75 cm   

Based on classifications 8.9 1.1 1.1 1.1 150.0 0.18 
Retrieved using OASIS ob-
servations 

8.86 4.54 0.8 0.8 200.0 0.19 
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Fig.1. OASIS measured soil moistures at 5 cm, 25 cm, 60 cm and 
75 cm, respectively. 
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Fig. 2. A comparison of model predicted (using the lookup table and the retrieved parameters) and observed values of soil 
water content at the 5 cm (a), 25 cm (b), 60 cm (c), and 75 cm (d) levels.  
 


