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1.  INTRODUCTION 
 
     The precipitation efficiency (PE) of various rain and 
snow systems has been a topic of serious scientific 
inquiry since Braham (1952) completed the water budget 
for a convective system observed during The 
Thunderstorm Project.  In the intervening years, the PE 
has been evaluated for both warm season (e.g., Marwitz 
1972; Fankhauser 1988) and cold season (e.g., Szeto et 
al. 1997) systems, although the historical emphasis has 
tended toward a more thorough understanding of deep 
moist convection.  Recent activity in this arena has 
focused on the numerical modeling of tropical and mid-
latitude convection (e.g., Ferrier et al. 1996; Li et al. 
2002). 
     However, in all this time, the efficiency with which 
precipitation systems process moisture has remained a 
largely academic pursuit.  The precipitation efficiency of 
a rain or snow system can best be determined as a time 
average over its lifetime (Doswell et al. 1996), so its 
value as a prediction tool would seem non-existent.  One 
method for approximating the precipitation efficiency has 
been derived by and shown to perform well as a 
component for estimating convective precipitation 
(Scofield et al. 2000).  Known as the “moisture correction 
factor,” it is the product of the precipitable water (PW) 
and the surface-to-500 mb mean relative humidity (RH), 
factors important in the generation of convective rainfall.  
This method focuses on using a PE proxy to estimate 
convective rainfall. 
     The goal of the current work is on improving PE 
estimation in order to highlight regions of flash flood 
potential up to 6 h in advance using variables derived 
largely from GOES soundings.  Consider two columns of 
large but equal precipitable water.  If convection occurs 
in both columns, the one with the higher PE would likely 
be the one that generates the greater rainfall totals.  As 
such, the PE was calculated for a number of Midwestern 
MCSs, and GOES sounding profiles from the precursor 
environment of Midwestern MCSs were analyzed to 
determine if a predictive equation for the PE might be 
determined. 
 
2. METHOD 
 
     A first step in this work was to calculate the PE of 
individual MCSs.  Choosing a method of calculating PE 
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that would be easily reproducible given data currently 
available within the meteorological community became a 
primary goal.  Consequently, the Sellers (1965) method 
(hereafter called the Sellers method) of calculating 
precipitation efficiency stood out.  The Sellers method 
defines PE climatologically as the ratio of mean daily 
precipitation to the average precipitable water of a given 
location. 
     For this study of mesoscale features, it was 
necessary to scale down the time interval to capture the 
life cycle of MCSs.  The six-hour total precipitation 
amounts available from Stage III radar mosaic estimates 
(e.g., Seo et al. 1998) lent themselves well to this study.  
The accumulated six-hour periods often capture the 
formation, maturity, and dissipation of an entire MCS 
lifecycle.  Although a climatological approach originally, 
the statistical basis of the Sellers method also lent itself 
to the datasets available for this study.  Because time 
averaging of both precipitation and PW became 
necessary (discussed later), the Sellers approach was 
all the more attractive.  Again, a time-average PE is 
often more revealing than an instantaneous value.   
 
2.1  Data 

 
     The two terms in the Sellers definition of PE require 
precipitation data and precipitable water.  Grids of 
precipitation depth (Sellers numerator), in millimeters, 
accumulated over six-hour periods ending at 00Z, 06Z, 
12Z, and 18Z were archived for summertime MCS 
cases.  The rainfall totals from the Stage III radar mosaic 
are created on a four-kilometer square grid from 
combined radar ranges. Rain gauge networks are used 
to quality check the precipitation values reported via 
radar measurement, and then the data is put into 
gridded GEMPAK format files.   
     The denominator of the Sellers PE definition requires 
computation of average precipitable water (PW).  In 
order to determine average precipitable water during the 
corresponding six-hour time period as precipitation 
depth, it became necessary to track PW with the motion 
of the MCS.  To do this, Rapid Update Cycle model 
initialization output was used to calculate PW for the 
area of our grid. 
     The last major data source is GOES soundings.  In 
order to create a predictive equation for PE based on 
GOES sounding parameters, hourly GOES soundings 
were collected.  Winds were obtained from the 
corresponding hour’s Rapid Update Cycle initialization 
for levels of GOES temperature and moisture.  Menzel et 
al. (1998) outlines the role of these new sounders to fill 



in the gaps of the traditional rawinsonde network, be 
they over data-sparse oceans, areas within the network 
that need additional coverage, or at times between 
traditional balloon launches.  For this study, vertical 
sounding profile images were archived from the many 
locations available within our area of interest for as many 
hours prior to convection as possible. 
 
2.2 PE Calculation 
 
     To prepare the precipitation grids for calculation, the 
fine scale detail of the four-kilometer resolution must be 
made more representative of the scale of PW supplied 
by the Rapid Update Cycle.  Averaging 100 adjoining 
four-kilometer grid boxes (10 x 10 grid) enlarges the six-
hour precipitation depth to a 40-kilometer grid.  Because 
precipitable water is found at each hour and precipitation 
depth should be temporally the same (but is a six-hour 
accumulation), we assume that the precipitation is 
evenly distributed across the six-hour period and so 
divide each grid point value by six.  The output is an 
hourly area-average precipitation depth in millimeters. 
     Precipitable water, as derived from Rapid Update 
Cycle hourly initializations, is on a slightly larger grid with 
different reference points than our precipitation grid.  
Grid bilinear interpolation is used to match up the two 
different grids point-to-point, and maps of hourly PW for 
our area of interest are produced. 
     From radar mosaics over the central United States, 
areas over which the MCS precipitates at the top of the 
hour are outlined on a numbered grid template for each 
hour within the six-hour period.  From these outlined 
grids, the total hourly average precipitation of the MCS 
can be determined.  The corresponding grid points are 
added to find the total PW of the MCS environment for 
that hour.  This summation is done for all hours within 
the period to obtain a total of hourly average 
precipitation depths (in millimeters) and total precipitable 
water (in millimeters) processed by the MCS.  According 
to the Sellers PE definition, precipitable water should be 
an average value over the same time period as the total 
precipitation.  To obtain a six-hour average PW value, 
the total PW is divided by six before the final PE 
calculation is completed.  To find the final hourly average 
PE, the ratio of total of hourly average precipitation to 
hourly average precipitable water is then computed. 
 
2.3  Sounding Choice 
 
     For each calculation of precipitation efficiency, a 
GOES sounding must be chosen so that environmental 
variables can be correlated to the PE value found.   
Chosen soundings are representative of the environment 
into which an MCS will move or develop, and provide 
information about low-level moisture content, mid-level 
lapse rates, and environmental wind shear.  For each 
period that has a calculated PE, a sounding near the 
MCS formation location or in the path of a mobile MCS is 
chosen for an hour early in the period, or one or two 
hours before the beginning of the period.  The earlier a 
sounding is chosen, the more likely a proximity sounding 
will be available because a less developed MCS will 

have a smaller shield of cirrus clouds to obscure the 
GOES soundings.  Another reason for choosing 
soundings early in the period is to avoid MCSs that alter 
their environments via cold low-level outflow.  After 
considering these factors, sounding choices were made 
to enable calculation of precursor environmental 
variables that influence PE.   
 
3.  RESULTS 
 
3.1 Sellers Method 
 
     Before beginning steps to create a predictive 
equation for PE, the validity of this newly applied PE 
calculation method had to be established.  Because 
other PE calculation methods have provided consistency 
throughout the years, calculating via a method originally 
proven only in climate studies required comparison to 
ensure that the method is valid.  Values from 2000 and 
2001 cases range from a minimum of 4% to a maximum 
of 48% PE, which is consistent with the preponderance 
of the literature.  Still, averages near 25% show that the 
Sellers method provides values lower than those of other 
methods, highlighting a systematic error.  
     By assuming that the six-hour accumulated 
precipitation fell equally among all six hours, we neglect 
the fact that some points received all of their 
precipitation in one or two hours, not six.  This 
assumption tends to decrease the total precipitation 
accounted for in the Sellers PE numerator, causing the 
PE percentage to decrease.  This is especially true for 
cases of fast-moving MCSs since they drop significant 
rainfall in a short time.  For example, one grid point may 
receive 6 inches of rain in one hour (an extreme rainfall), 
and no rain in the other 5 hours because the MCS has 
moved out of the area.  Our average method would 
divide that total by six, giving an average rainfall of one 
inch per hour.  So, when adding up the hourly rainfall 
from our outlined MCS areas, only one inch of the total 
six that fell will be accounted for because for only one 
hour did the MCS precipitate on that grid point. 
     In this way, fast-moving MCSs will systematically 
have diminished PEs, and slow moving MCSs will be 
more accurately represented.  Still, no correction was 
made for this systematic error because problems of the 
like described before were not that common, due in part 
to the large region of “stratiform” rainfall commonly found 
in the midst of the convective cells of an MCS (e.g., 
Houze 1997).  Moreover, the Sellers PE calculation 
method does discriminate between high and low (48 to 
4% PE), which can be useful to forecasters looking for 
the most critical precipitation systems.   
 
3.2 Statistical Analyses 
 
     The GOES soundings chosen to be representative of 
the MCS environment for the 2000 summer season were 
used in performing both single correlations and creating 
a predictive equation.  The dataset included the PE for 
20 six-hour periods and their corresponding soundings, 
which were analyzed with a version of the software 
developed by Moore and Pino (1990).  The output 



variables include a host of stability indices, measures of 
moisture, shears over various depths, and results from 
parcel manipulations (lifting). 
     The most significant of these variables, along with 
outputs of the same or similar quantities from the GOES 
sounder, were input to a statistical program for 
correlation to PE.  Of the correlation coefficients 
obtained, the quantities having coefficients with 
confidence intervals in excess of 90% were isolated for 
further scrutiny and are outlined in Table 1.  An inverse 
correlation was found between the PE of an MCS and 
the wind shear in the pre-MCS environment, concurring 
with the findings of Marwitz (1972).  Thus, the notion of 
lower shear allowing for more erect cumulonimbi, less 
entrainment, and enhanced collision-coalescence in the 
warm cloud are supported.  The positive correlation 
between PE and the mean relative humidity in the 
surface-LCL layer is not surprising given that the primary 
moisture source for most convection is from beneath 
cloud base.  A relatively strong negative correlation 
exists between PE and the convective inhibition (CIN) of 
parcels from the lowest 100 mb.  The significance of this 
finding is discussed further below.   
     One such parameter is CAPE, or convective available 
potential energy.  Fankhauser (1988) also believed that 
CAPE should correlate to PE, but found no such 
relationship.  It would seem that the potential for strong 
updrafts could enhance PE, but our correlations suggest 
that it is the amount of energy to be overcome to create 
and maintain updrafts that affects PE more.  An 
assumption why this relationship exists lies in the fact 
that when CIN is minimized, even modest amounts of 
CAPE will produce updrafts strong enough to effectively 
collect precipitation particles, but even for large CAPE, 
CIN can be large and updrafts may never get to form, 
making CIN the dominant force.   
     Other variables that did not correlate well include the 
precipitable water, while intuitively it would seem that 
adding more moisture to the atmosphere would increase 
precipitation.  Increasing PW does not necessarily 
increase PE, it only increases the denominator of the PE 
expression, which could cause PE to decrease overall if 
the amount of actual precipitation remained constant.  
Next is the warm cloud depth, measured from cloud 
base up to where core cloud temperatures reach 
freezing.  The warm cloud depth is important because it 
defines the depth of the cloud wherein collision-
coalescence is the dominant process for rain droplet 
growth; it would probably correlate better to PE if our 
dataset contained more variety of depths. Considering 
that the range on calculated warm cloud depths is small 
in the summertime, PE studies incorporating year-round 
calculations would have better opportunity to capture a 
systematic relationship. Lastly, environmental relative 
humidity surrounding the cloud would seem to also 
influence PE, since very dry surroundings would tend to 
evaporate cloud material from the sides and decrease 
the moisture available to create precipitation.  However, 
the range of extra-cloud humidity is small in the summer, 
making a relationship difficult to determine.  This is 
especially significant because Newton (1966) postulated 
that drier environmental air surrounding a cloud being  

Table 1:  Significant variables from year 2000 cases 
with correlation coefficients and confidence 
intervals provided. 

Variable Corr. 
Coef. 

Conf. 
 

Interval 
Surface to LCL RH 0.392 90% 

CIN of lowest 100mb parcel -0.481 95% 
Shear over warm cloud 

depth -0.384 90% 

 
entrained in was the cause of the decrease of PE with 
increasing shear.  While this may well be true for the 
individual cumulonimbus, such does not appear to be 
the case for large collections of cumulonimbi manifested 
by an MCS.      
     After finding few of the more significant individual 
variables that vary systematically with PE, a predictive 
equation was created using the 2000 dataset.  The 
forward stepwise statistical method employed by Klein 
(1983) was chosen because it eliminates the 
interdependency between predictors.  Since 
meteorological variables such as low-level relative 
humidity and LCL height are related, the two should not 
be used as independent variables in creating a 
predictive equation.  Stepwise regression chooses the 
first predictor that explains the most variance in the 
predictand, and then chooses the second predictor that 
explains the most of the remaining variance after the 
effect of the first predictor is held constant.  The method 
is repeated until a sufficient number of variables and a 
suitable significance level are reached.   
     Using statistical software, both variables derived from 
GOES soundings and those calculated via the stability 
program of Moore and Pino (1990) were input with PE to 
create a predictive equation.  After many trials, the two 
equations significant at the 95% level with the fewest 
number of variables were found and are presented in 
Table 2.  Both equations have as their first predictor the 
CIN calculated from a parcel of air with the mean 
properties of the lowest 100mb of the atmosphere.  Both 
also have CIN calculated from the low-level parcel with 
the highest θe.  The two methods of calculating CIN 
prove useful for different convective environments, with 
the first encompassing surface-based convection, and 
the second capturing elevated convection.  The last term 
or terms in the stepwise regression equations are the 
same as were found during the individual correlations, 
those being cloud shear and low-level relative humidity.   
     Prediction of 2001 PE from the equations was 
accomplished for fourteen MCS cases, and results of the 
prediction equation paired with the calculated PE are 
presented in Table 3.  Each calculated PE is for the first 
six-hour period the MCS existed on our grid.  The root-
mean-square error (RMSE) for each equation shows that 
the predictive equation with four variables provides a 
slightly more accurate predictor of PE.  If an equation is 
to be used to predict PE in advance, the three variable 
equation is recommended because their RMSEs are 
almost identical and fewer variables require calculation. 



4.  CONCLUSIONS 
 
     A predictive relationship between warm-season 
Midwestern MCS PE and GOES sounding profiles has 
been established.  To achieve this goal, a PE calculation 
method was presented based on a climatological PE 
definition.  By decreasing the time step to six-hour 
precipitation for the Sellers PE numerator and 
corresponding precipitable water for the denominator, 
the definition can capture mesoscale features like MCSs.   
     Using these PE values in conjunction with 
environmental parameters derived from GOES 
soundings representative of the environmental air 
available to the MCS, statistical analyses were 
performed on the data.  The single correlations affirm 
that PE is controlled by certain environmental factors, 
namely vertical wind shear, the sub-cloud base moisture, 
and the convective inhibition.  The implications of these 
statistically significant relationships reach into the realm 
of forecasting, providing a basis for advance prediction 
capability.  Predictive equations created using the 
stepwise regression method are significant at the 95% 
level and have RMSEs near 5%, yielding acceptable 
predictions.  Therefore, PE can be predicted in advance 
due to its dependence on environmental factors 
measured by the GOES sounder. 
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Table 2:  Stepwise regression equations based on 
2000 PE values. CIN1 is the CIN as calculated from a 
parcel with the mean conditions of the lowest 
100mb.  CIN2 is the CIN as calculated from a parcel 
with the maximum θe in the lowest levels.  CS is the 
cloud shear from base to top of the warm cloud.  
RH is the relative humidity from the surface to LCL.   

  Equation 

Three 
Variables 

PE = 0.306 – 0.00173(CIN1) + 
0.000855(CIN2) – 10.5(CS) 

Four 
Variables 

PE = 0.308 – 0.00174(CIN1) + 
0.000856(CIN2) – 10.5(CS) – 

0.002(RH) 
 
Table 3:  Prediction of 2001 PE values using both the 
three and four variable equations.  The RMSE of 
each equation is shown along with the percent 
variance accounted for by each equation. 
 

Date Predicted 
PE (3-Var) 

Predicted 
PE (4-Var) 

Calculat
ed PE 

4 June 31% 31% 48% 
21 June 31% 31% 26% 
3 July 30% 30% 34% 

16 July 30% 30% 22% 
18 July 24% 24% 19% 
25 July 25% 25% 28% 
26 July 22% 22% 23% 
24 Aug 27% 27% 29% 
29 Aug 27% 30% 33% 
30 Aug 30% 22% 27% 
8 Sept 22% 22% 33% 
9 Sept 27% 27% 41% 

19 Sept 28% 28% 27% 
21 Sept 33% 33% 28% 

RMSE 4.38% 4.36% ------- 
% Variance 51.5% 51.5% ------- 
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